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A B S T R A C T

In recent years, there has been an increase in artificial intelligence (AI) applications in the field of structural 
engineering. With the rapid development of AI, new opportunities have emerged to use this technology to 
generate and check the structural design. Over the last few years, there has been a sharp increase in the number 
of publications relating to AI applications in structural design. This paper presents a systematic review of pre
vious studies on the applications of AI in structural design. A total of 134 papers were analyzed. The review 
shows that AI techniques have benefited engineers in generating optimized structural design solutions that meet 
the requirements of building codes and design standards. Additionally, challenges and future opportunities are 
presented and discussed. This review will contribute to the body of knowledge by summarizing the state-of-the- 
art of using AI technologies in structural design and exploring future research opportunities in this area.

1. Introduction

In recent years, the field of AI has witnessed significant advance
ments across various domains [1–3]. The driving forces behind these 
advancements are the core technologies of machine learning (ML), 
especially deep learning (DL) [4]. ML algorithms empower systems to 
learn from data, while DL, a subset of ML, has revolutionized fields such 
as computer vision and natural language processing (NLP). These de
velopments, combined with the accessibility of AI tools and their inte
gration with other technologies, offer potential for various industrial 
and societal progress. State-of-the-art tools like ChatGPT [5] have 
enhanced more natural human-machine interactions, while advance
ments in generative AI have expanded the horizons of human creativity 
and problem-solving capabilities.

ML has proven to be a valuable tool for a diverse range of applica
tions in structural engineering [6–8]. In structural engineering, the 
integration of ML has started to change decision-making processes [1]. 
Leveraging its analytical capabilities, ML delves into data to generate 
alternatives aligned with project requirements. Its role also extends to 
predicting and ensuring structural integrity. Functioning as a knowl
edgeable collaborator, ML aids engineers to ensure precision in various 
aspects.

One important aspect of structural engineering is the design and 
optimization of structures [6]. In the intelligent structural design field, 
the data feature representation is crucial [9]. Data collection involves 
gathering essential information on structural performance requirements 

and results from structural analysis tools. Design generation and opti
mization of design solutions form the core components of structural 
design. Lastly, compliance checking is an essential step in ensuring 
structural safety and conformance to building code requirements. This 
whole process can be very complicated, especially for complex struc
tures like high-rise buildings, which sometimes require extensive expe
rience and numerous iterations. The number of iterations required 
generally depends on the experience and expertise of designers and of 
course the complexity of the structure.

Researchers have started to use ML to aid in this process. Through 
learning from previous designs, ML has the capacity to generate new 
designs by considering the experience embedded in those previous it
erations. This is particularly evident in the design of reinforced concrete 
shear wall layouts, where ML has proven to be exceptionally useful [8]. 
Besides shear walls, researchers are also exploring the application of ML 
in other areas, such as determining member sizes [10] and arranging 
steel rebars in reinforced concrete [11], showing the versatility of ML in 
addressing various aspects of structural design.

Another important aspect of structural design is to ensure compli
ance with regulatory documents. Traditionally, this process has been 
labor-intensive, relying on manual efforts from experts to ensure designs 
align with established codes and standards [12]. However, the advent of 
automated compliance checking (ACC) methods using AI has changed 
how this process works. These methods have been applied in various 
fields, including construction safety requirements [13], fire safety [14], 
energy regulations [15] and building permit requirements [16]. 
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Researchers have explored the application of NLP and Building Infor
mation Modeling (BIM) [17–19] to interpret rules from regulatory 
documents, transforming them into computer-readable rules for ACC. 
DL, with its advanced techniques, has broadened the scope of ACC, 
considering the complicated structure in codes [20]. Within the check
ing phase, researchers have explored areas such as information extrac
tion [21], transformation [22], compliance reasoning [23], deep 
learning-based methods [13,21,24–27], and BIM-based compliance 
checking [28–31].

Enabling a fully automated design process requires the integration of 
both design generation and compliance checking aspects, working 
collaboratively to ensure a smooth workflow. Recent research efforts 
highlight the advancements in generative AI design for building struc
tures. Liao et al. [9] and Jang et al. [32] summarized the latest de
velopments in generative AI building design, comparing different 
evaluation methods for the results generated by AI. This work contrib
utes to understanding and assessing the effectiveness of AI-generated 
designs in the context of building structures. Additionally, Shamshiri 
et al. [33] focused on the analysis of text-based information extracted 
from regulatory documents, including building codes and design stan
dards. Their approach involved leveraging text mining and NLP tech
niques to extract valuable insights from textual information. Their study 
underscores the importance of incorporating AI methods not only in the 
design phase but also in the analysis of textual data relevant to regula
tory documents, ensuring a more comprehensive and automated 
approach throughout the entire design and construction process.

While earlier review papers separately summarized AI applications 
in design generation [9,32], design optimization [34] and compliance 
check [33], limited effort has been given to integrate these critical 
components in structural design. In practice, structural design is a 
complete process that involves both the creative development of design 
solutions and the verification of their compliance with regulatory 
standards. With the rapid advancement of AI techniques including the 

recent rise of large language models (LLMs) and the emergence of new 
research objectives, bridging design generation and compliance check
ing has become increasingly important. This review aims to address this 
gap by synthesizing recent developments that link these two domains. It 
offers a comprehensive overview of AI applications in structural design 
generation and compliance checking, highlighting the methods adopted 
and the specific challenges addressed in each study.

The remainder of this paper is framed as follows: Section 2 presents 
the approach to select literature for review and an analysis of publica
tions. Section 3 concentrates on AI-assisted design generation. Section 4 
describes recent studies on automated compliance checking. In Section 
5, challenges are presented. Conclusion and future opportunities are 
discussed in Section 6.

2. Analysis of publications

This study is dedicated to exploring the integration of AI techniques 
into structural design. The focus is on obtaining information from 
refereed journal papers and ignoring conference articles and books. The 
Scopus database, recognized for its extensive repository, was the pri
mary resource for paper selection [35]. This approach ensures a 
comprehensive and high-quality foundation for the insights and findings 
presented in this study.

The search process is shown in Fig. 1. The search strategy involves 
specific keywords grouped into two categories: design generation and 
compliance checking. Given the recent surge in AI development, the 
search covers the past ten years, aligning with the period of substantial 
computational advancements. To be more efficient, the search in this 
study utilized keywords. For the design generation area, the keywords 
used were: “Structural Design” AND ““Intelligent” OR “Automated” OR 
“Smart”” AND ““Networks” OR “Deep Learning” OR “Machine Learning” 
OR “Artificial intelligence””. Then the document type was set to Article, 
the year between 2015 and 2025, the language to English, and the 

Fig. 1. Literature selection process.
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subject area to Engineering. The initial search yielded 270 papers, and 
subsequent manual screening excluded the majority of the papers to 
keep those papers that focused primarily on design of structures. Spe
cifically, papers related to property prediction, product design and 
manufacturing, and thermal analysis were excluded. Based on a review 
of the titles and abstracts of the 270 papers, 57 papers were eventually 
selected. Likewise, for selecting papers related to ‘checking’, the key
words used in the search were: “Automated” AND “Compliance” AND 
“Checking”. Initial results yielded 182 documents, which were reduced 
to 64 after rigorous filtering by reading the titles and abstracts. 
Acknowledging the keyword limitations, the snowballing approach 
contributed 15 more papers, and deleted two identical papers in both 
parts, resulting in a total of 134 for structural design.

The annual publication data, as illustrated in Fig. 2, indicates a 
notable trend—a substantial surge in the number of relevant papers over 
the past four years. This pattern underscores the growing importance of 
AI applications in both design generation and compliance checking. In 
the field of design generation, 2021 marked a significant year, wit
nessing a notable surge in the number of published papers. In 2021, 
researchers [8,36,37] began to utilize deep learning models for struc
tural design. It is noteworthy that the publication counts from 2021 to 
2024 (assessed on July 14, 2025) are particularly high, indicating 
increased interest and robust research activity during this period. 
Looking ahead, it is anticipated that the publication counts for 2025 and 
beyond will continue this upward trend.

Regarding publication sources, as summarized in Fig. 3, Automation 
in Construction ranks first with 29 articles, accounting for 21.6 % of the 
total, followed by Advanced Engineering Informatics and the Journal of 
Computing in Civil Engineering.

Utilizing the VOSViewer tool, a co-occurrence keyword analysis 
generated insightful knowledge maps. Fig. 4 indicates crucial terms and 
connections from both research domains, highlighting central themes 
and key concepts. The co-occurrence analysis of keywords offers three 
insights: 

(1) The green group focuses on structural design, with keywords such 
as deep learning, machine learning, shear walls, and optimiza
tion. These studies mainly apply AI to structure-related tasks.

(2) The red group is about automated compliance checking and 
natural language processing, with keywords such as building 
codes, semantics, and language models. This cluster connects AI, 
including using large language models, with checking if designs 
meet rules.

(3) The blue group centers on architectural design and BIM. It in
cludes keywords like automation and code compliance, showing 
how AI is used in design and modeling tools.

This map shows that different areas of research are closely connected 
through AI methods, such as deep learning, natural language processing, 
and machine learning. It also highlights that AI is being used to support 
both the design and checking stages of the building process, from 
structural design to code compliance.

3. AI-assisted structural design generation

In structural engineering, design often involves the search for 
possible solutions. AI excels in generating designs with similarities to 
previous instances. For structural design, while codes provide guidance, 
certain aspects of the process rely on the substantial experience of the 
designer. AI proves advantageous in these domains as it can learn from 
prior experiences, such as analyzing previous structural drawings. 
Following the training phase, these models emulate engineering 
decision-making, effectively contributing to the design process. Typi
cally, in the whole design procedure, the preliminary step involves 
determining the layout of the structural systems, followed by detailed 
component design. Therefore, this review section is divided into two 
parts: layout generation and component design and optimization.

The publications were categorized based on building material and 
the focus of AI applications. The distribution of studies by building 
material type is shown in Fig. 5(a), with more than 60 % focusing on 
reinforced concrete structures, followed by steel structures (27.7 %). 
Regarding AI applications, the main research focuses are structural 
element layout design and structural element dimension design, as 
illustrated in Fig. 5(b). As for structural element layout design (Fig. 5
(c)), half of the studies concentrate on the layout of shear walls. This can 
be attributed to the fact that in high-rise buildings, shear wall layout 
design is highly iterative and time-consuming, even for experienced 
structural engineers [8].

The donut chart (Fig. 6) illustrates the distribution of AI models used 
in the reviewed studies, with each segment's size representing its relative 
frequency. Here, classical ML refers specifically to traditional machine 
learning methods that do not involve neural networks. GAN occupies the 
largest portion (37.5 %), highlighting its widespread application. Graph 
Neural Network (GNN) (20.8 %) also shows strong presence, followed 
by Artificial Neural network (ANN) (16.7 %), classical ML and diffusion 
models. Although RL is not shown in the chart due to its nature as a 
learning paradigm rather than a specific model type, it is commonly 
used in several studies for solving optimization or search problems 
where finding the optimal design solution is the primary objective [37].

This distribution suggests a strong preference for generative models 
such as GAN in solving design problems. Graph-based models like GNNs 
also play a key role in capturing spatial and topological relationships 
inherent in structural and architectural layouts. Meanwhile, traditional 
regression-based models, often falling under classical ML and ANN 
categories, are commonly applied in predictive tasks such as capacity 
prediction [38].

Fig. 7 presents the proportions of reviewed papers that (a) use 
drawings as input and (b) learn from past designs. As shown in Fig. 7(a), 
57.1 % of the papers utilize drawings as input data, indicating a majority 
of studies incorporate visual or graphical information in their methods. 
In Fig. 7(b), 64.3 % of the papers are found to leverage past design data 
in their approach, highlighting a significant trend of learning from his
torical examples. Among the papers that do not learn directly from past 
designs, many still employ AI techniques, such as RL to search for 
optimal solutions [37]. These findings highlight the increasing emphasis 
on data-driven approaches in structural design, whether through expe
riential knowledge or advanced AI-driven exploration.

Fig. 2. Distribution of papers between year 2015 and 2025.
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3.1. Layout generation

In the structural design process, especially for high-rise buildings, the 
initial stage revolves around designing component layouts. This process, 
while crucial for determining the arrangement of various structural el
ements, often requires iterative efforts and expertise [8]. To streamline 
this stage, ML can learn from past drawings created by experienced 
engineers. It can then generate design outcomes that closely resemble 
those of engineers. Various studies have been conducted on component 
layout design to enhance this aspect of the process.

Ampanavos et al. [39] introduced a system to predict the structural 
layouts from sketches and trained a Convolutional Neural Network 
(CNN) to perform this task. Their method focused on the column layout 

in single-floor plan using rigid metal frames. The whole process is iter
ative and, in each iteration, a local sub-problem is solved. Zhang et al. 
[40] presented an end-to-end method utilizing GNN to automatically 
generate structural topology for complex layouts. Zhang et al. [41] 
introduced a sketch-guided topology optimization approach based on 
the problem-independent machine learning (PIML) technique, focusing 
on enhancing the optimization process through the incorporation of 
sketch guidance.

The design of RC shear walls is a widely discussed topic within the 
structural layout design, with various optimization approaches 
employed by researchers. Lou et al. [42] explored an extended Evolu
tionary Structural Optimization (ESO) method to perform the optimi
zation of shear wall layout. Then in another study, Lou et al. [43] 

Fig. 3. Journals with more than one publication.

Fig. 4. Mapping of co-occurring keywords.
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utilized the tabu search algorithm to optimize the shear wall layout. 
Additionally, Zhou et al. [44] applied a genetic algorithm with a greedy 
strategy, considering prior knowledge for shear wall layout design. 
While optimization algorithms play a crucial role, the expertise of 
human professionals is also invaluable.

To integrate human experience, Liao et al. [8] proposed a GAN-based 
method for the structural design of shear wall buildings. Fig. 8 provides 
an example of shear wall layout design. The proposed method (Struct
GAN) generates the layout of shear wall in the architecture drawings by 
learning from previous drawings by experienced engineers. The method 
was proven capable of generating shear wall layouts that are similar to 
those generated by experienced engineers. To better capture the corre
lations and distinctions between building components, Han et al. [45] 
proposed an optimized data representation and understanding method 
aimed at enhancing the accuracy and quality of structural design 
outcomes.

Furthermore, the properties of text can play a crucial role in shear 
wall layout design, providing valuable guidance. Liao et al. [46] intro
duced TxtImg2Img, a method that enhanced GAN-based approaches by 
integrating both drawing and text information. This innovative 
approach incorporated text (seismic design intensity and structural 
height) during training, resulting in a performance improvement of up 
to 21 %. To capture the correlation between key design features and the 
shear wall ratio, machine learning methods can be used to enhance 
prediction accuracy, and when combined with GAN-generated results, 
they further improve the performance of shear wall layout generation 
[47].

However, the design generated by the previous GAN method is not 
satisfactory in terms of the local details, particularly in the elevator shaft 
zone and the balcony zone. This is because the elevator shaft zone is the 
ideal location for shear walls, whereas in the balcony zone the shear 
walls are rarely needed. To tackle this issue, Zhao et al. [48] improved 
the local design of shear wall structures by artificially introducing a 
mask of critical zones in the preprocessing part of the method. This 

Fig. 5. Overview of categorized research focus.

Fig. 6. Distribution of AI model families in the reviewed studies.
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approach resulted in a more reasonable local layout of the shear walls in 
critical zones.

To facilitate the application of automated shear wall design, Fei et al. 
[49] proposed a practical application of GAN in the design of reinforced 
concrete shear walls. This application employed a cloud design platform 
to establish the environment, enabling the entire system to generate the 
complete schematic design phase for reinforced concrete shear wall 
structures. Pizarro et al. [50] proposed a streamlined model for shear 
wall buildings based on interconnected 3D beam-columns. This model 
enables a quick derivation of the fundamental period, base shear, and 
moment, offering flexibility to handle inputs from various sources like 
grid-based layouts or vectorized image floor plans.

The GAN require high-resolution pixel images, which may lead to 
huge computational workloads. Also, images cannot show the 

topological characteristics [51]. To address this limitation, graph rep
resentations have been introduced, as they can effectively capture and 
illustrate the relationships between nodes and edges [52]. For example, 
Zhao et al. [51] adopted GNN to design shear wall layouts. In their 
research, the building component was represented by graph nodes and 
edges, as illustrated in Fig. 9. Case studies demonstrated that the pro
posed model produced results that are similar to those of engineers, 
compared to the StructGAN method. More accurate shear wall layout 
design can be generated when seismic design factors [53] and expert 
experience [54] are incorporated. Additionally, diffusion models have 
begun to be used to generate shear wall layouts, demonstrating 
improved performance compared to GANs [55,56].

Besides the shear wall layout, DL models also provide layout design 
for other structural elements, like beams, columns, braces, bearings, etc. 

Fig. 7. Proportions of reviewed papers.

Fig. 8. Shear wall layout design example [8].

Fig. 9. Shear walls in the graph edge representation method (adapted from Zhao et al. [51]).
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Zhao et al. [57] proposed an intelligent layout design method for beams 
of reinforced concrete shear wall structures. This method learned the 
existing designs and generated new layout schemes. A typical case study 
showed that the structural performance of the beam and slab designed 
by this method was comparable to that of competent engineers.

Also, GNN can work well in beam layout design. Zhao et al. [58] 
presented a method based on GNN to design the layout of beams in shear 
wall structures. Similarly, with the shear wall design by GNN, this 
method can achieve robust topological feature extraction capabilities. 
The result highly resembled those designed by engineers. Xia et al. [59] 
also proposed a co-design method using a GNN to simultaneously 
generate shear wall and beam layouts, aiming to achieve a higher 
Intersection over Union (IoU).

In frame structures, designing the layout of beams is also crucial. 
Zhao et al. [60] proposed an intelligent plan layout design method for 
frame beams based on GNN. Since the frame structure data was not 
sufficient, the authors presented a large-scale dataset generation method 
first on four common planar shapes of frame structures. The results 
showed that the GNN model can influence the performance of the beam 
layout design. Zhao et al. [61] introduced an automated method for 
plane trusses, incorporating user preferences to inform and generate the 
truss design. Shan et al. [62] introduced an integrated method for steel 
frame design utilizing a surrogate model. ML models can effectively 
reduce computational costs [62,63].

Regarding column and brace layout design, Fu et al. [64] proposed a 
GAN-based method (FrameGAN) to automate the layout design of steel 
frame-brace structures. The model can generate the layout of columns 
and braces. The authors utilized a dual GAN model to design the layout 
of columns and braces consequently. And better performance was ach
ieved when additional design rules were integrated [65]. Additionally, a 
Graph Attention Network (GAT) was proposed for shell structure design, 
improving both design efficiency and performance [66]. Tan et al. [67] 
employed a diffusion model to pinpoint feasible positions for buckling- 
restrained braces, effectively reducing the search space for subsequent 
optimization.

In seismic design field, DL can also help seismic structural design. Lu 
et al. [68] developed a surrogate physics model to train GANs. The result 
showed that the proposed model produced design solutions in a shorter 
timeline than a competent designer. Liao et al. [69] proposed a GAN 
based method to generate the layout and parameters of seismic isolation 
bearings. In their study, the layout of seismic isolation bearings was 
generated by a GAN-based method. The pseudo-labels were used as the 
target data, indicating the location of seismic isolation bearing and shear 
wall component. After training, the method was able to design seismic 
force-resisting systems that incorporated seismic isolation bearings.

The design process can be further enriched by incorporating archi
tectural floor plans, which play a crucial role in the early stages of 
building design. This includes the transformation of sketches [70], the 
generation of architectural layouts from them [71] and similar floor plan 
layout retrieval to facilitate draft design [72]. These approaches not only 
improve design efficiency but also enable designers to explore a wider 
range of layout alternatives with reduced manual effort.

Overall, it can be concluded that AI significantly supports the design 
of component layouts. The methods have the capability to learn from 
past designs, while simultaneously incorporating domain knowledge 
and rules to enhance accuracy and generate more sensible outcomes. 
Shear wall layout stands out as a popular application for AI-assisted 
design due to the complex non-structural (e.g. alignment with non- 
structural walls and elevator cores) and structural (e.g. reducing 
torsional effect due to eccentricity) requirements. Research for other 
structural elements follows, such as columns and braces [64]. It is also 
noted that most research studies so far have focused on concrete struc
tures; similar studies on other materials such as steel [64,73] and wood 
[74] are limited. Another crucial observation is that the AI-generated 
layouts in the mentioned research often rely on learned experiences 
from the past.

It is acknowledged that past experiences may not always yield the 
most optimal solution. Therefore, more research focusing on utilizing AI 
for optimization is still needed, ensuring that the AI-generated layouts 
are not only learned from historical data but are also optimized for ef
ficiency and effectiveness. This underscores the ongoing importance of 
advancing AI methodologies to further optimize and diversify the field 
of structural layout design.

3.2. Component design and optimization

Structural component design usually follows after the layout has 
been determined and the structural analysis has been done. Different 
components require different design methods. Although the design of a 
single component, like simply supported beams, can be simple and 
straightforward, the most optimal design can be challenging and time- 
consuming to obtain, especially if multiple design criteria are required 
to be met. Additionally, especially for high-rise buildings, single- 
member design cannot be conducted in isolation because the member 
design could have an impact on the design of other components, such as 
connections. Multiple iterations may be necessary to determine the most 
optimum design solutions for the complete system. Therefore, the use of 
AI models for structural component design may be an effective approach 
to generate optimum design solutions with reduced efforts, compared 
with the conventional method of trial-and-error.

Pizarro and Massone [36] utilized a regression model to predict the 
length and thickness of reinforced concrete building walls. A total of 30 
features for each wall segment were calculated to describe each wall, 
and the deep neural network model (Fig. 10) can predict the thickness 
and length of the wall segments. The model has six fully connected 
hidden layers with 1024 neurons in each layer. In the other work con
ducted by Pizarro et al. [75], CNN models were proposed to generate the 
final engineering floor plan by combining two independent model pre
dictions. Because in the engineering plans, engineers may add new 
structural elements for structural needs, compared with their previous 
study [36], this improved framework was able to generate new struc
tural elements not present in the architecture drawing. Similarly, So 
et al. [76] employed an artificial neural network to efficiently predict 
beam cross-section designs.

Reinforcement learning is also a direction for component design. 
Jeong and Jo [37] used deep reinforcement learning (DRL) to design 
reinforced concrete beams. The agent observes the current state of the 
environment, selects an action, receives a reward, and the environment 
transitions to the next state, following a repeating cycle. The DRL agent 
was able to design the beam with the lowest cost while ensuring flexural 
moment and shear design requirements. In the training phase, there is 
no need to label the dataset; instead, it can train itself by exploring 
different design options and maximizing reward. When using this 
method, the reward function was considered a critical component for 
further use in structural design automation. Similarly, DRL was utilized 
in designing steel frame structures, achieving faster results than manual 
methods [73]. Lin et al. [77] applied DRL to the design of steel–concrete 
composite beams, demonstrating promising results with reduced time 
consumption.

In the domain of detailing rebar in reinforced concrete design, the 
prevention of clashes between rebars holds paramount importance. 
Conventionally, the layout of reinforcement bars heavily depends on the 
experiential knowledge of engineers, resulting in labor-intensive pro
cesses. To overcome this challenge, Liu et al. [78] proposed incorpo
rating optimization algorithms to facilitate the automatic generation of 
rebar layouts. This innovative approach aimed to streamline the rein
forced concrete design process, reducing manual effort and potential 
clashes between rebars.

Another research presented by Liu et al. [79] used a BIM-based 
framework that integrated GAN and DRL to automatically generate 
clash-free rebar designs in prefabricated concrete wall panels (PCWPs). 
They first used GAN to generate rebar designs, and then in the DRL 
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process, the agent selected the suitable actions and converged to the 
optimum through practical training. In the last step, the 3D rebar models 
were generated in BIM. To achieve design optimization for the rebar 
layout in a reinforced concrete beam, Li et al. [11] proposed a frame
work for rebar design optimization in reinforced concrete structures. 
GNN was utilized to represent the relationship between different rebar 
groups in the components. The study involved two GNNs, one for rebar 
layout proposal in reinforced concrete and the other for clash diagnosis. 
The example showed that the proposed approach can generate practical 
rebar layouts without clash.

For high-rise buildings, the design involves several steps. The sche
matic design, as the initial phase of the design process, exerts the most 
significant influence on the entire design process. Chang and Cheng [80] 
proposed a method to reduce the iterative industrial structural design 
workflow by training a structural simulator. Fei et al. [10] proposed a 
novel method that considers domain knowledge in the GAN method 
when choosing the component size in framed tube structures. Consid
ering the design conditions and the structural layout drawing, the model 
can offer appropriate sizes for each component with expert experience 
and domain knowledge. The main contribution of the paper was that it 
was able to accumulate expert experience and master domain 
knowledge.

Similarly, in the schematic design stage, Feng et al. [81] adopted a 
GAN-based method in the intelligent cross-sectional design method of 
shear wall components. The authors embedded rules in the GAN to 
achieve a rapid and accurate cross-sectional design of shear wall com
ponents. Qin et al. [82] introduced heterogeneous graph neural net
works (HetGNNs) for component size design in RC frame structures, 
enabling rapid sizing completed in under one second. Hayashi and 
Ohsaki [83,84] employed graph embedding (GE) and Reinforcement 
Learning (RL) for discrete cross-section optimization in planar steel 
frames. Here, the RL agent strategically minimized the total structural 
material volume while adhering to practical constraints. Improved GE 
formulations empowered the agent to comprehend the structural attri
butes of columns and beams. Hoseini et al. [85] optimized brace cross- 
section areas using AI algorithms, demonstrating lighter design solutions 
compared to conventional design examples.

AI-based structural design methods have demonstrated potential to 
enhance the overall efficiency and consistency of the design process. In 
recent studies, researchers have compared AI-generated designs with 
those produced by engineers, using a variety of evaluation metrics. 
These comparisons, summarized in Table 1, indicate that AI-based 
methods can achieve performance levels comparable to manual 
design. The degree of similarity, however, varies depending on the 
complexity and specificity of the design task.

In addition to the two categories layout generation and component 
design, other types of design are also using AI for the structural design, 
such as intelligently partition grids to generating coherent and well- 
defined free-form grid structures [86], constructability of rebar cages 
[87], design of wind turbine tower [88]. LLMs have recently started to 
gain attention in design-related tasks. Their ability to understand and 
generate structured content makes them promising tools for supporting 
design processes [89–91].

To conclude, the primary focus of structural design revolves around 
the design of essential elements such as beams, columns, lateral load- 
resisting systems and their connections. While relevant research has 
been conducted on beams, columns and shear walls, there have been 
fewer reported studies on the use of AI technologies in connection de
signs [38]. For both timber and steel structures, the design of connec
tions can be very challenging, due to the need to consider a wide variety 
of structural and non-structural requirements, which include fire pro
tection, fabrication procedures, esthetics, etc. The determination of 
member and connection sizes is the core of the structural design process, 

Fig. 10. Model architecture for predicting the wall thickness and length (adapted from Pizarro and Massone [36]).

Table 1 
Summary of recent studies comparing AI-based and manual structural design.

References Structural 
design object

Evaluation metrics Results

[65] Column and 
brace layout

Story drift ratios Slightly higher than 
engineering results; 18.7 % 
difference

[73] Column and 
beam section

Material cost 8.3 % higher material cost 
than engineer's design

[51,56] Shear wall 
layout

IoU >0.5

[55] Shear wall 
layout

Material 
consumption and 
max drift ratio

Material consumption 
slightly higher than 
engineer's design (average 
4.8 %); differences in max 
drift ratio in x and y are 2.04 
% and 3.52 %

[10] Component 
size design

Material 
consumption and 
score

AI achieves 2.06 % lower 
concrete consumption. 3.48 
rationality quantification, 
very close to engineer's 
design (3.49) in rationality 
quantification

[75] Engineering 
floor plan

IoU 0.627 ± 0.174

[36] Wall thickness 
and length

R2 0.995

[58] Beam layout IoU 0.7864

IoU: Intersection over Union between AI design and engineer's design.
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and AI emerges as a valuable tool for optimizing this task, potentially 
reducing the time spent on the process compared with the traditional 
iterative procedures. It is also noted that, since AI model performance 
heavily depends on the training dataset, data enhancement is essential 
for increasing data diversity and improving training robustness [92].

4. Automated compliance checking

In the realm of structural design, ensuring compliance with stan
dards and codes is also critical. In practice, when the design of a struc
ture is completed by a qualified structural engineer, the design will be 
evaluated to ensure that the design meets the requirements of relevant 
building codes and design standards. This process is referred to as 
compliance checking in this paper. Traditionally, this has relied on 
manual processes that are prone to errors and time-consuming. Recog
nizing this, a surge of research has emerged in recent years, delving into 
ACC to enhance the accuracy and efficiency of this crucial procedure.

The keyword relationships specific to ACC are summarized in Fig. 11. 
This keyword co-occurrence map highlights the main research themes in 
automated compliance checking. Closely connected keywords reveal 
strong links between BIM, natural language processing, AI techniques, 
and rule-based checking. The network suggests an interdisciplinary 
approach across design, modeling, and compliance tasks.

ACC aims to automate the evaluation process, replacing the manual 
assessments with more reliable automated procedures [93]. This 
exploration of ACC unfolds in three key dimensions: rule-based ACC, 
which centers on text information extraction [94,95], rule representa
tion [96] and reasoning [23]; DL-based ACC, which harnesses DL 
methods [20,21,24,25,27,28,97,98]; and strategies to enhance inter
pretability, which addresse challenges in ACC processes [99–106]. LLMs 
are also a new and growing method used for ACC [107–110]. This sec
tion presents a comprehensive overview of the advancements in ACC, 

emphasizing the integration of rule-based, DL-based, and LLM-based 
approaches. The applications of ACC usually lie in text-related clauses. 
These clauses form the basis for compliance checking, ensuring that 
designs adhere to established standards and regulations.

4.1. Rule-based automated compliance checking

In ACC, rule interpretation plays a crucial role, involving the trans
lation of rules from text into a machine-understandable format. Zhang 
and El-Gohary [22] proposed an approach for automated rule extraction 
comprising five steps. The first step involves text classification to 
recognize relevant sentences in the documents. Subsequently, the in
formation extraction step identifies words and phrases in these senten
ces. Following this, the extracted information was transformed into logic 
clauses for implementation and evaluation.

Before extracting rules, the text undergoes classification into pre
defined categories to selectively retrieve pertinent clauses and filter out 
irrelevant ones, thereby enhancing the efficiency and accuracy of rule 
extraction. Salama and El-Gohary [111] introduced a semantic, machine 
learning-based text classification algorithm designed to classify clauses 
and sub-clauses within general conditions, thereby supporting ACC. In 
the extraction stage, Zhang and El-Gohary [94] proposed a semantic 
NLP approach for automatically extracting information from textual 
documents related to construction regulations. Their study incorporated 
pattern-matching rules and conflict resolution rules, utilizing NLP 
techniques to capture the syntactic features of the text. Beach et al. 
[112] utilized the Requirement, Application, Selection, and Exception 
(RASE) method as the rule representation approach. They further 
employed a set of formulas to determine and articulate the rules within 
their study.

Challenges arising from text complexities, including hierarchically 
structured text, can pose difficulties. To overcome these challenges, 

Fig. 11. Co-occurrence map of ACC studies.
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Zhou and El-Gohary [95] introduced a semantic information extraction 
method. This method was designed to automatically extract building 
energy requirements from specifications, offering a solution to navigate 
and extract relevant information from complex text structures. 
Following information extraction, there is a crucial transformation 
phase. Zhang and El-Gohary [22] expanded on this by considering both 
syntactic and semantic text features simultaneously, integrating domain 
ontology to prevent ambiguous term interpretation. Subsequently, 
Zhang and El-Gohary [23] proposed a novel first-order logic-based 
representation for compliance reasoning in building designs, enhancing 
regulatory compliance checks.

Ontology-based methods play a crucial role in capturing the se
mantics of textual information, and several papers have explored this 
approach. Zhou and El-Gohary [113] introduced an ontology-based text 
classification algorithm to refine the classification process. The proposed 
approach has the potential to be applied to other domains with varying 
ontologies. However, its performance is contingent upon the quality of 
the ontology utilized. Later, Zhou and El-Gohary [114] presented a 
domain-specific text classification algorithm aimed at enhancing clas
sification processes. In a related field, Zhong et al. [115] developed four 
specific ontologies to represent knowledge.

Additionally, Jiang et al. [116] introduced a multi-ontology method 
to facilitate ACC, employing rule-based reasoning to generate compre
hensive checking reports. Ontology mapping offers a feasible approach 
to enriching design information semantically. Li et al. [117] introduced 
a method for representing building codes, breaking down building code 
information into five distinct parts. They established a mapping between 
concepts in building information ontology and code knowledge con
cepts, facilitating the automatic generation of reasoning rules.

Towards achieving full automation, Zhang and El-Gohary [118] 
introduced a unified system integrating NLP-related techniques. This 
comprehensive system comprises modules for information extraction 
and transformation from building codes, design information extraction 
from BIMs, and compliance reasoning. Addressing practicality, Xue and 
Zhang [119] expanded the rule set iteratively, balancing rule validity, 
generality, and compatibility with existing rules. This iterative expan
sion method effectively broadened the scope of checkable code re
quirements in ACC systems. Moreover, Zhang et al. [120] identified 
essential capabilities for rule representation in health care design reg
ulations, providing criteria to enhance automated code compliance for 
the built environment. This research provided valuable insights by of
fering a checklist for future representation development and establish
ing criteria for evaluating rule representation methods.

It is common that non-textual information in the building code and 
design standards contain essential information for design [121]. Previ
ous research mainly focuses on text and other types of information still 
remain to be processed. To solve this, Xue et al. [121] proposed a 
method to extract tabulated information in the building codes to assist 
ACC systems and generate rules. The authors estimated that a substan
tial number of logic rules, exceeding 1500, could be derived from tables 
found in both the training and test datasets, originating from a collective 
pool of 17 tables. Recent advancements have furthered the ACC field. 
Zheng et al. [122] introduced a knowledge-informed framework 
leveraging NLP techniques. Their approach involved establishing an 
ontology to systematically represent domain knowledge, incorporating 
semantic alignment and conflict resolution mechanisms. Additionally, 
an algorithm was devised to determine appropriate SPARQL functions, 
facilitating complex rule interpretation by generating SPARQL-based 
queries tailored for model checking purposes.

In summary, the reviewed studies collectively emphasize the pivotal 
role of ACC in structural design. The journey from rule interpretation to 
compliance reasoning involves sophisticated techniques, including ML, 
NLP, ontology-based methods, and advanced reasoning models. Re
searchers have strived to bridge the gap between textual information in 
regulatory documents and machine-understandable representations, 
allowing for efficient rule extraction and interpretation. Ontology-based 

approaches have been instrumental in capturing semantic relationships 
and enhancing rule representation. Furthermore, recent developments, 
such as iterative rule set expansion and the incorporation of tabulated 
information, showcase the field's evolution to address complex chal
lenges. As ACC advances towards full automation, the integration of 
diverse techniques and frameworks, informed by domain knowledge 
and practical considerations, remains essential for shaping the future of 
intelligent and comprehensive compliance checking in the built 
environment.

4.2. DL-based compliance checking

Rule-based methods are adept at converting information into 
computer-readable formats, but they often lack adaptability and scal
ability, especially when dealing with diverse documents or undergoing 
major updates. In such scenarios, DL-based methods offer a solution by 
automatically transforming code sentences into formats that computers 
can process. Table 2 summarizes the main DL-based compliance 
checking models and their targeted problems.

Usually, the characteristics of different types of regulatory docu
ments are not always the same. To solve this issue, Zhang and El-Gohary 
[21] employed bi-directional LSTM and CRF models with transfer 
learning strategies for extracting semantic and syntactic information 
elements from building code sentences, as illustrated in Fig. 12. The 
model was trained using different building code sentences and general 
English sentences. The trained model performed consistently in different 
types of regulatory documents. Subsequently, Zhang and El-Gohary [24] 
further suggested a hierarchical approach to decompose sentences into 
units. A DL-based method was proposed to automatically extract se
mantic relations and transform building-code sentences into hierarchies 
using these relations. The trained model achieved 94 % accuracy, 
showing the model's strong capability in semantic relation extraction 
and requirement hierarchy comprehension.

Later, Wang and El-Gohary [25] employed DL techniques to identify 
entities within regulations and address referential ambiguities present in 
the extracted entities. Bloch et al. [97] employed GNN to assess code 
compliance for single-family houses. They found that GNN can be a valid 
direction for future research. GNNs enhance traditional ML by extending 
its capabilities to regulations governing the relational aspects between 
building elements.

Another challenge faced by numerous ACC systems is that they 
mainly focus on simple sentences. Regulatory documents typically 

Table 2 
Summary of DL-based compliance checking.

Research Models Targeted Problems

Zhang and 
El-Gohary 
[21]

Bidirectional long short term 
memory networks (LSTM) and 
conditional random fields (CRF) 
models with transfer learning

Extract semantic and syntactic 
information elements

Zhang and 
El-Gohary 
[24]

Bidirectional LSTM and 
multilayer perceptron (MLP)

Extract semantics relations 
between words

Wang and El- 
Gohary 
[25]

LSTM and CNN-based model 
with pre-trained embeddings

Identify entities within 
regulations and address 
referential ambiguities present 
in the extracted entities

Bloch et al. 
[97]

GNN
Assess code compliance for 
single-family houses against 
specified requirements.

Zhou et al. 
[20]

Transfer learning Label the semantic elements

Zheng et al. 
[98]

Pre-trained domain-specific 
language models and transfer 
learning

Assess the performance of 
different DL models

Zhang and 
El-Gohary 
[28]

Transformer-based method
Align the Industry Foundation 
Classes (IFC) and regulatory 
concepts
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feature lengthy and intricate sentences, rather than being composed of 
single, straightforward requirements. To tackle this limitation, re
searchers have concentrated on expanding the scope of ACC to interpret 
a more diverse set of sentences. Zhou et al. [20] introduced an innova
tive framework for rule interpretation. In this framework, transfer 
learning was utilized for labelling the semantic elements. This frame
work was designed to analyze regulatory text in a manner similar to a 
domain-specific language. In comparison to prior methods, this new 
framework demonstrated an enhanced ability to interpret more intricate 
sentences, signaling a broader range of potential applications.

Recognizing that hidden knowledge plays a critical role in under
standing relationships and obtaining properties, the incorporation of 
domain knowledge proves beneficial in the rule interpretation process. 
Zheng et al. [98] developed large-scale domain corpora and pre-trained 
domain-specific language models for the Architecture, Engineering, and 
Construction (AEC) domain. They systematically explored various 
transfer learning and fine-tuning techniques to assess the performance of 
pre-trained DL models across various NLP tasks. Results emphasized the 
better performance in NLP tasks with higher F1 score.

BIM is an important tool for ACC. Manual efforts are often needed 
when aligning the semantic regulations with BIM. To address this, Zhang 
and El-Gohary [28] proposed a transformer-based method to automate 
this process. The proposed method used a relation classification model 
to relate and align the IFC and regulatory concepts. The method used a 
transformer-based model and leveraged the definitions of the concepts 
and an IFC knowledge graph to provide additional contextual informa
tion and knowledge for improved classification and alignment. The re
sults showed the importance of adjusting existing models with specific 
data in one domain or task.

In summary, the incorporation of DL-based methodologies into ACC 
systems marks a transformative advancement in the field. These ap
proaches, encompassing diverse models and techniques, showcase 
considerable strides in addressing the inherent challenges of sentence 
diversity and automating the extraction of semantic information from 
building-code sentences. The integration of domain-specific knowledge 
with state-of-the-art DL methods holds the promise of enhancing the 
adaptability and scalability of ACC systems, thereby ensuring more 
effective compliance checking within complex regulatory environments.

It is crucial to acknowledge the dynamic landscape of DL models, 
characterized by rapid development and the emergence of novel tech
niques such as the LLMs [89]. While these advancements present 
exciting opportunities, their applications within ACC remain relatively 
limited at present. The integration of these cutting-edge methods into 
ACC frameworks holds the potential to unlock new dimensions of effi
ciency and accuracy, paving the way for enhanced automation and in
telligence in compliance checking processes. As the field continues to 
evolve, there is a need for further exploration and experimentation with 
these innovative techniques to fully harness their capabilities and 
contribute to the ongoing refinement of ACC systems.

4.3. Enhancing interpretability

The effectiveness of ACC systems is intrinsically tied to the scope of 
checkable code requirements. Uhm et al. [99] discovered that less than 

20 % of the gathered sentences could be translated to design rules. In a 
related study by Zhang et al. [100], the focus shifted towards addressing 
ambiguity in building requirements. They established a comprehensive 
taxonomy of ambiguity, marking the first systematic exploration and 
classification of ambiguous elements in building requirements. This 
work provided crucial insights into refining ACC systems by better un
derstanding ambiguous elements within building requirements. Zheng 
et al. [101] employed an efficient text classification model based on a 
pre-trained domain-specific language model and transfer learning 
techniques to enhance interpretability. They evaluated more than 150 
building codes in China and results showed that only 34.4 % can be 
interpreted. It is still difficult to transform the entire regulatory docu
ment into computer-processable information.

Knowledge Graph serves as a powerful tool for representing inter
connected relationships [123]. In the context of design codes and rules 
processing, they have been applied to improve code representation by 
establishing semantic links between clauses [102], structuring rule in
formation [103], identify non-compliant components [124] and support 
automated checks of BIM models [125]. These applications help bridge 
the gap between textual regulations and machine-readable formats, 
enabling more intelligent design assistance.

Another notable consideration in the realm of research is the 
generalization of proposed methods. Zhang and El-Gohary [104] 
addressed this concern by conducting a computability analysis through a 
clustering-based approach. They introduced a new set of syntactic and 
semantic features and complexity and computability metrics for 
computability analysis. Then sentence types were identified by the 
proposed features and metrics.

In the broader context of interpreting code requirements, researchers 
have tried generating intelligent code. Zhang and El-Gohary [105] 
introduced the concept of an intelligent building code. This concept 
served as a strategic response to potential errors in information extrac
tion and transformation processes. By bridging natural-language re
quirements in the code with structured, computer-understandable 
semantic information (represented as semantic requirement hierar
chies), these advancements contributed significantly to refining ACC 
systems. Intelligent coding not only aids in reducing errors but also 
aligns with the trend of improving the interpretability and reliability of 
rule-based systems within the domain of building code requirements. 
Lee et al. [106] introduced an approach to defining high-level imple
mentable methods for improving low-level rule-checking procedures. 
Verb phrases were translated to code functions which can return real 
numbers or true/false value. This translation aims to reduce ambiguity 
while simultaneously representing the properties of objects in BIM 
applications.

4.4. Large language models

Recent advances in LLMs have opened new possibilities for ACC, a 
task that is fundamentally language-driven [126]. For example, LLMs 
can convert raw code clauses into executable queries through prompt 
engineering, eliminating much of the manual intermediate modeling 
that previously slowed ACC workflows [110]. Joffe et al. [107] created 
an open-source, retrieval-augmented LLM chatbot that answers 

Fig. 12. Deep neural network-based method for deep information extraction (adapted from Zhang and El-Gohary [21]).
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questions about building codes and standards with source-grounded 
responses and interactive follow-up, demonstrating the scalability of 
LLM-based compliance assistance.

Madireddy et al. [108] embedded leading LLMs within Revit to parse 
building codes, autogenerate Python scripts, and flag non-compliant 
elements in real projects, greatly reducing review time while main
taining accuracy. He et al. [109] advanced this idea by combining 
retrieval-augmented generation with keyword search, enabling LLM to 
answer regulation queries. LLMs can also be combined with deep 
learning techniques to enhance their capabilities [127]. Collectively, 
these studies indicate that coupling LLMs with structured retrieval, 
domain-specific toolchains, and explicit script generation is emerging as 
a robust, scalable, and transparent paradigm for ACC.

In conclusion, the efforts to enhance interpretability within ACC 
systems have yielded notable progress, with several promising ap
proaches contributing to a more nuanced understanding of complex 
regulatory requirements. One significant approach of improvement in
volves addressing ambiguity in building requirements, a critical aspect 
of ensuring accurate rule interpretation. The introduction of intelligent 
coding concepts, exemplified by the concept of intelligent building code, 
represents another noteworthy stride, creating a bridge between natural 
language requirements and highly structured, computer-understandable 
semantic information. Also, challenges exist in fully understanding and 
integrating information. This is the driving force behind ongoing efforts 
by researchers to enhance the interpretability of regulatory documents 
for building designs.

5. Challenges

Transitioning to automated structural design offers significant im
provements in efficiency and accuracy, yet it also introduces substantial 
challenges. This shift from traditional manual methods to automated 
processes involves overcoming complex obstacles that highlight the in
tricacies of this transformation. To fully leverage AI's capabilities in 
structural design, it is essential to confront these challenges with 
comprehensive solutions. Based on analysis, key challenges are sum
marized as follows.

5.1. Data challenge

Data is fundamental to the effectiveness of AI in structural design. 
The quantity and quality of the data influence the performance of ML/ 
DL models. However, the structural design field often suffers from a 
scarcity of datasets, primarily due to limited availability of public data 
sources [9]. Structural companies may be reluctant to share their data 
publicly. The size of the data still impacts the performance of the models 
[56]. Besides, datasets may lack even distribution across different ranges 
[128] and fail to capture complex structures [129], posing challenges for 
model training and generalization.

Additionally, structural drawings require pre-processing to extract 
usable information, but this extraction is not an easy task considering 
the complexity of structural drawings. The transition from traditional 
paper-based drawings to digital formats demands sophisticated scanning 
and digitization methods to guarantee precision and maintain data 
integrity throughout the process. Researchers usually use specific steps 
to processing their dataset, which is hard to be generalized [130].

In compliance checking, non-textual information in the regulatory 
documents is also crucial [121]. Exacting that information can be harder 
than text information. Moreover, the consolidation of diverse regulatory 
documents into a cohesive and accessible database can be an obstacle, as 
these documents often vary in format, structure, and content.

5.2. Design challenge

Capturing the intricate expertise and implicit knowledge of struc
tural engineers is not an easy task. This knowledge, accumulated 

through extensive experience, is often tacit and not easily expressed, 
complicating its translation into algorithmic form. AI systems tasked 
with replicating such decision-making need to develop a sophisticated 
understanding of both the explicit rules and the subtle judgments that 
engineers make. While generative design algorithms can directly pro
duce designs from end to end, their performance can be inconsistent, 
influenced by the limitations in capturing this deep expertise [48].

The curse of dimensionality significantly impedes structural design 
automation. Research typically focuses on isolated aspects of structural 
design, training models on specific variables [10,58]. However, 
comprehensive design automation requires integrating numerous com
ponents, necessitating multiple models that must function cohesively. 
This field involves managing thousands of variables—from material 
properties and geometric configurations to regulatory compliance. As 
the number of variables increases, the computational load may grow 
exponentially, thereby escalating the resources needed for generating or 
optimizing designs. Efficiently navigating this vast dimensional space 
demands not only robust computational power but also advanced al
gorithms designed to handle such complexity without compromising 
performance.

5.3. Integration challenge

Integrating AI tools into existing engineering workflows and systems 
presents a complex challenge. The integration process must ensure that 
AI outputs effectively align with the diverse requirements and practices 
of all participants involved in the design process. Additionally, 
achieving design automation requires various AI models to work 
together. However, coordinating these models to collaborate effectively 
poses its own set of challenges, complicating the overall integration 
effort. Moreover, structural design software and hardware are not 
readily compatible with newer AI technologies, necessitating significant 
modifications or comprehensive upgrades. Deploying DL models in 
structural design typically demands high computational power [49]. 
The financial burden includes not only the initial cost of developing and 
training AI models but also the ongoing expenses related to deploying 
and maintaining these solutions. Such costs can be high, potentially 
limiting access to AI technologies.

5.4. Performance challenge

AI in structural design is transformative, leveraging existing designs 
to enhance and streamline engineering solutions [8,10,58]. However, 
this approach often results in AI-generated designs that, while efficient, 
do not significantly surpass the capabilities of traditional engineering 
solutions. This limitation stems in part from AI's dependency on pre- 
existing design data, which inherently restricts its ability to propose 
novel engineering concepts that deviate from historical trends.

Furthermore, the crucial importance of structural integrity and 
safety in construction necessitates rigorous validation of AI-generated 
designs. Human engineers must verify these outputs to ensure they 
comply with stringent safety requirements. While ACC can assist this 
verification, this process is hindered by the shortage of professionals 
who possess a deep understanding of both structural engineering prin
ciples and advanced computer science techniques. The combination of 
these disciplines is vital not only for evaluating the reliability and safety 
of AI solutions but also for driving innovation within the field.

Additionally, as AI increasingly assumes decision-making roles in 
structural design, ethical and liability issues become more prominent 
[131]. One of the emerging challenges is determining responsibility for 
structural outcomes when AI-assisted designs are implemented. This 
issue highlights the need for clear guidelines and standards that define 
accountability in the use of AI in structural engineering, ensuring that 
safety and professional ethics are maintained in the face of rapidly 
advancing technology.
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5.5. Assessment and supervision challenge

AI-generated structural design results may contain errors that pose 
serious safety risks if left undetected. Monitoring and early warning 
systems play a critical role in identifying such issues [132]. However, 
how to effectively monitor, prevent, and correct these errors during the 
design stage remains a challenge. Current AI systems in structural design 
rely heavily on human oversight, as there is no fully reliable mechanism 
to ensure the correctness of AI outputs autonomously. Unlike human 
designers, AI systems cannot be held accountable for mistakes, further 
emphasizing the importance of validation process. Furthermore, the 
absence of standard procedures for validating and correcting AI- 
generated design outcomes presents an additional barrier to practical 
adoption. Advancing efforts in this area is essential for the safe and 
trustworthy integration of AI into structural engineering practice.

6. Conclusions and future opportunities

The increasing number of publications on AI applications in struc
tural design each year highlights AI's growing influence in this field. AI 
has proven invaluable in generating human-like designs inspired by 
historical engineering projects, effectively addressing complexities that 
typically demand expert knowledge. By utilizing past designs and inte
grating domain knowledge, AI enhances efficiency and practicality in 
design generation tasks. Furthermore, AI improves compliance checking 
processes by increasing both accuracy and efficiency. Advances in ACC 
have been driven by the uses of machine learning, natural language 
processing, and ontology-based techniques, which translate complex 
regulatory texts into machine-understandable formats, facilitating rule 
extraction and interpretation. LLMs are emerging as powerful tools to 
support the whole structural design process. Researchers are leveraging 
various neural network architectures tailored to specific structural 
design tasks, demonstrating AI's ability to complement human expertise.

This study underscores the inherent potential of AI-driven design 
generation and ACC in structural design. These pivotal advancements 
open up exciting opportunities that redefine the landscape of structural 
design automation. Looking ahead, researchers have a multitude of 
opportunities to explore, shaping the future direction in this field. The 
future opportunities can be summarized as follows: 

(1) The integration of cutting-edge DL methods into structural design 
represents a significant advancement beyond traditional rule- 
based approaches. These data-driven methods offer superior 
performance in managing the complexities and multitude of 
variables inherent in structural design problems. Moreover, these 
techniques demonstrate enhanced capability in learning from the 
past experiences of structural engineers, which can hardly be 
modeled through traditional methods. Future research can also 
explore the use of physics-informed AI to enable more reliable 
efficient design process [68,69,73].

(2) Broaden the applications to more design steps and design objects. 
The current scope of structural design, while impactful, repre
sents only a fraction of the entire design process. There are 
numerous aspects that remain to be fully automated. Regarding 
data, augmentation methods might address the limited avail
ability of data and enhance data quality. Developing more 
effective techniques for extracting precise information from 
structural drawings and non-textual details in regulatory docu
ments is also vital. In terms of design optimization, given the 
availability of computational power in structural design, 
advanced techniques should be employed to optimize the 
numerous parameters involved in a design project.

(3) Combining flexible AI tools with existing software can reduce 
computational costs and increase processing speeds by tran
sitioning operations to cloud-based platforms [133]. Cloud-based 
AI applications support the integration of various AI models, 

which can be customized and merged according to specific phases 
of the design process. This flexibility allows engineers to deploy 
the most effective tools at different stages, eliminating the need 
for frequent software updates or hardware upgrades. The ability 
to collaborate across different models streamlines the process 
from initial design concepts to final compliance check, opti
mizing the entire workflow.

(4) Implementing systems that offer real-time design guidance can 
accelerate the design process by providing immediate feedback. 
By leveraging historical design data, AI can assist engineers with 
insights derived from similar past projects. This knowledge not 
only informs current design efforts with proven solutions and 
techniques but also aids in error detection. Such systems 
continuously analyze and refine designs throughout their devel
opment, ensuring they meet regulatory standards. This approach 
not only accelerates the design phase but also minimizes errors 
and subsequent rework, thereby optimizing project timelines and 
cutting costs.

(5) The effective deployment of AI in structural design not only re
quires robust technology but also a workforce that is skilled in 
utilizing such tools. Developing collaborative interfaces that 
facilitate direct interaction between engineers and AI systems can 
streamline the design process [134]. Human-AI collaboration can 
also help in other structural design processes, such as using LLM 
to automated structural analysis including finite element 
modeling [135], including LLM as the core interactive control 
[91]. This approach not only speeds up the design process but 
also ensures that the outputs are more accurate and aligned with 
human expertise and industry standards. Furthermore, such 
collaborative tools can assist in training and guiding engineers, 
gradually enhancing their proficiency with AI technologies. This 
ongoing interaction between human intelligence and AI fosters a 
productive relationship that can lead to more innovative solu
tions and a higher degree of customization in structural designs.

(6) Full-process automation is an emerging direction in structural 
engineering. It involves the automatic floor plan analysis [130] 
and integration of automated structural design with automated 
construction methods. For example, floor plan analysis can 
include segmenting walls [136,137] to prepare data for down
stream structural design. AI-generated designs can be directly 
linked to construction technologies such as automated formwork 
layout systems [138], 3D printing [139] or robotic assembly. 
Automating both design and construction could lead to higher 
efficiency, lower labor costs, and fewer errors. However, realizing 
this goal requires collaboration among structural engineers, AI 
developers, and construction experts. Future research can focus 
on aligning design outputs with automated construction systems 
to improve the overall workflow.
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