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ABSTRACT 12 

Data driven methods have gained momentum in recent years in solving highly non-13 

linear engineering problems that are challenging to solve using conventional methods. In this 14 

paper, we present a hybrid neural network model to predict the lateral response of large-15 

diameter monopiles in multi-layered soil. The hybrid neural network consists of a mixture of 16 

convolutional and fully-connected layers, which capture the impacts of the soil profile, the pile 17 

geometry, and loading conditions on the lateral load response of monopiles. To train the neural 18 

network model, we produced data from high-fidelity three-dimensional (3D) finite element (FE) 19 

models that are validated against full-scale pile load tests. To ensure consistent model 20 

performance across the entire range of pile capacities considered in the dataset (ranging from 21 

approximately 100 kN to 100,000 kN), we utilize the relative error (percentage error) as the 22 

criterion for training the model. To achieve this goal, we explored six different combinations 23 

of data transformation methods (i.e., natural logarithm and root transformations) and cost 24 

functions. Among these models, the model trained with Mean Squared Error (MSE) using 25 

natural logarithm transformation yielded the most accurate and consistent predictions of the 26 

lateral capacities of monopiles. To demonstrate the strengths of the developed neural network 27 

model, it was used as a surrogate model to perform pile design optimization using sequential 28 
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quadratic programming. In addition, a design example is provided to show how the developed 29 

method can be easily implemented.  30 

1 INTRODUCTION 31 

The offshore wind industry has grown exponentially in the last decade driven by the 32 

increasing demand for clean renewable energy. Large-scale offshore wind turbines are often 33 

supported on monopiles, a foundation type that is made of a single open-ended steel pipe driven 34 

or jacked into the seabed. The lateral load design for these large-diameter monopiles has 35 

traditionally relied on the p−y method. This method considers the pile as a one-dimensional 36 

Euler-Bernoulli beam while the soil medium is modeled as a series of non-linear springs 37 

attached to the beam. Since this method was originally developed and used for slender pile 38 

design, its applicability for large-diameter monopiles is not well established (Doherty and 39 

Gavin 2012; Farahani et al. 2022; Suryasentana and Lehane 2016). Evidence has shown that 40 

the p-y method may result in inaccurate predictions for the lateral response of monopiles (Han 41 

et al. 2015, 2017; Suryasentana and Lehane 2016).  42 

In order to improve the design for large-diameter monopiles, researchers have 43 

developed new design approaches for monopiles based on three-dimensional finite-element 44 

(3D FE) analyses. When compared with the p−y method, a 3D FE analysis can fully capture 45 

the 3D pile-soil interactions when a pile is laterally loaded, producing more accurate capacity 46 

predictions. 3D FE analysis has been widely used to study the lateral load response of single 47 

piles (Ahmadi and Ahmari 2009; Brown and Shie 1990; Chatterjee et al. 2015; Cheng et al. 48 

2021; Kementzetzidis et al. 2018; Murphy et al. 2018; Peng et al. 2010). Recently, Byrne et al. 49 

(2020) conducted a series of 3D FE analyses for monopiles placed in stiff and overconsolidated 50 
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clay, based on which the updated p−y method was proposed. Taborda et al. (2020) conducted 51 

a 3D FE analysis for laterally loaded monopiles placed in dense sands, accounting for a 52 

constitutive model that captures the behavior of sand with a range of relative densities. Despite 53 

its accurate results, 3D FE analysis is computationally costly, often taking several days to 54 

complete a full-scale FE simulation (Han et al. 2015; Xu et al. 2013). In addition, the accuracy 55 

of the FE analysis is highly dependent on the knowledge and experience of the modeler. Proper 56 

meshing and selection of an appropriate constitutive model for the soil are both critical to 57 

ensure the quality of 3D FE analyses. 58 

Unlike physics-based models (e.g., FE analyses), which are constructed based on 59 

physics laws and appropriate assumptions, Artificial Neural Network (ANN) models are 60 

developed to recognize the underlying patterns within the data collected for the problem of 61 

interest (Shahin 2016). When properly trained, ANN models can produce fast predictions 62 

(taking split-second computational time) with high accuracies. Inspired by the biological neural 63 

network, ANN was initially developed for simulating neurological networks in the 1940s 64 

(McCelloch and Pitts 1943). In recent years, ANN has gained popularity in solving complex 65 

geotechnical engineering problems due to the rapidly growing computational capacity and data 66 

availability (Chan and Low 2012; Huang et al. 2022; Kordjazi et al. 2014; Makasis et al. 2018; 67 

Moeinifard et al. 2022). For instance, Pham et al. (2020) and Kardani et al. (2020) developed 68 

ANN models to estimate the axial bearing capacity of driven piles. Xiao et al. (2022) developed 69 

a machine-learning based spatio-temporal forecasting model to predict landslide locations and 70 

consequences. Zhang et al. (2022) used convolutional neural network (CNN) to characterize 71 

the soil spatial variability from limited cone penetration test (CPT) data. Lai et al. (2022) 72 

developed an ANN-based framework to detect particle contacts for discrete element method 73 
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(DEM). ANN has been demonstrated through these studies to be a promising instrument for 74 

solving geotechnical engineering challenges. 75 

In this paper, we developed an ANN model to predict the lateral load response of 76 

monopiles installed in multi-layered sandy soil. The model takes pile geometries, loading 77 

conditions, and the cone penetration test (CPT) data as inputs, generating predictions for the 78 

lateral pile capacities corresponding to different pile rotation levels at the mudline. We 79 

investigated the effectiveness of various data transformation techniques and cost functions in 80 

reducing the skewness of training datasets and improving model performance. In addition, the 81 

developed model was used as a surrogate model to perform pile design optimization.  82 

2 METHODOLOGY 83 

In this section, we first briefly explain the fundamental ideas of fully-connected (FC) 84 

neural work and convolutional neural network (CNN). Based on these two ANN methods, we 85 

propose the hybrid neural network architecture designed for this study. 86 

2.1. Hybrid Neural Network 87 

Deep neural network or Deep Learning (DL) is an ANN model with a structure of more 88 

than three layers (Patterson and Gibson 2017). Fully-connected (FC) neural network, also 89 

known as feed-forward neural network, is the simplest yet most widely-used type of DL. FC 90 

neural networks are often used for feature extraction for non-sequential data. As shown in 91 

Figure 1a, a FC neural network is composed of an input layer, several hidden middle layers, 92 

and an output layer. Each layer contains one or multiple nodes (also known as artificial 93 

neurons), the most fundamental units in an FC neural network. Resembling the function of 94 
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biological neurons, nodes are designed to process the information received from upstream 95 

nodes and then pass the processed information to the downstream nodes. To achieve this goal, 96 

a node first uses a linear function to map the outputs of all nodes from the previous layer into 97 

a single value, which is then passed into a non-linear activation function to generate the output 98 

for this node (Figure 1b). The output values for all nodes in a layer are then used as the input 99 

for the next layer. The non-linear activation function, even if it is as simple as a bilinear 100 

function [e.g., Rectified Linear Unit: ReLU(z)=max(0,z)], plays a critical role that empowers 101 

an FC neural network to capture the complex non-linear patterns in the data. 102 

 103 
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 104 

Figure 1 (a) Architecture of a typical FC neural network. ai
l denotes the output of node i in 105 

layer l. Layer 0 is the input layer in the network.; (b) The operation of a node in an FC neural 106 

network. Al−1 is the output vector for layer l−1, which consists of nodes denoted by a0
l−1 to 107 

am
l−1. wi

l is a vector of weights for node i in layer l. bi
l is the bias for node i in layer l. zi

l is an 108 

intermediate variable for node i in layer l.  109 

Convolutional neural network (CNN) is another branch of DL that is often used to 110 

capture higher-order features from structured data such as images (Patterson and Gibson 2017). 111 

The application of CNN models for image recognition is one of the primary reasons for the 112 

thriving of CNN and DL models in the past decade. Convolutional blocks are the fundamental 113 

elements in a CNN model. A convolutional block often consists of three types of operations: 114 
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convolution, non-linear activation, and pooling. Figure 2 illustrates the detailed mechanisms of 115 

these operations using one one-dimensional (1D) convolutional layer with a single kernel as an 116 

example. In contrast to the two-dimensional (2D) CNNs that are often used for image 117 

classification, we use a 1D CNN in this study to capture patterns in the CPT data (in the format 118 

of a 1D vector). When compared with an FC network, a CNN involves significantly fewer 119 

model parameters that need to be learned considering inputs of the same size, substantially 120 

reducing the computational cost for model training and inference. 121 

Pooling layers are useful for reducing the dimensions of the data, the number of 122 

parameters to learn, and consequently the computational cost. In this study, the MaxPooling 123 

function is used, which selects the maximum value within a specified region of data after the 124 

convolution. Pooling also make models more robust to positional variations in the data.  125 

 126 

Figure 2 Components for a one-dimensional convolutional neural network. ai
 l−1 is the output 127 

i in layer l−1. wi
l represents the ith weight in a kernel vector (also known as filter) in layer l. 128 

The symbol ✶ denotes the convolution operation. The result of convolution operation (=zi
l) 129 

along with a bias term bi
l is passed into the non-linear activation function, outputting si

l. Both 130 

wi
l and bi

l are parameters that need to be learned for layer l. 131 
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A key process in the development of a deep learning model is designing the neural 132 

network architecture and selecting the hyperparameters of the model, such as the network’s 133 

depth (number of layers), width (number of nodes/kernels), and the type of layers. Deeper and 134 

wider models are more effective in identifying complex patterns in the dataset, but it is more 135 

computationally costly to train the large number of parameters in these more complex models. 136 

If the model’s performance on the training set continues to improve while its 137 

performance on the validation set starts to deteriorate, it is a sign of overfitting. Training should 138 

be stopped. Complex models are more prone to overfitting the training data, leading to poor 139 

model generalization on new unseen data that is different from the training data. Regularization 140 

techniques (e.g., dropout, L2 regularization and batch normalization) can be used to reduce the 141 

chance of overfitting and improve the model’s generalization ability. Simple models, on the 142 

other hand, are easier to train and optimize, but they might not be able to capture the more 143 

complex patterns in a dataset. Often, the development of an ideal model requires repetitive 144 

experimentation guided by monitoring the model errors during training and validating.  145 

Figure 3 shows the architecture of the hybrid neural network designed in this study. The hybrid 146 

model consists of two threads of neural network layers. In one thread, convolutional layers 147 

followed by three FC layers are used to capture the patterns (feature extraction: peaks and 148 

valleys that represent strong and weak soil layers) in the CPT cone resistance profile. In the 149 

other thread, FC layers are used to capture the impact of the pile geometry (i.e., area moment 150 

of inertia Ip and pile length L) and loading condition (load eccentricity h) on the lateral capacity 151 

of monopiles. Near the end of the model, the two threads are merged into one using FC layers 152 

to capture the impact of the soil-pile interaction on the lateral load response of monopiles. The 153 

final outputs of the model are the lateral pile capacities H0.5 and H1 corresponding to pile 154 

rotation θ=0.5° and θ=1°, respectively, at the mudline. 155 
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 156 

Figure 3 The architecture of the hybrid neural network model. Convolutional blocks are 157 

incorporated to extract patterns in the CPT cone resistance profile. Each convolutional block 158 

contains two one-dimensional convolutional followed by a one-dimensional pooling layer. In 159 

addition to the CPT data, three geometric attributes of the pile and loading condition are 160 

introduced to the model with three fully connected layers. In the end, two branches are 161 

combined to generate the lateral capacities H0.5 and H1. 162 

2.2. Data generation and processing 163 

2.2.1. Data generation 164 

As a data-driven method, a deep learning model often requires a large amount of 165 

training data to learn the complex relationships between input and output variables (e.g. pile 166 

geometry, soil profile, loading condition and the lateral pile capacities). Yet, data is limited for 167 

full-scale lateral load tests on large-diameter monopiles accompanied by full site 168 

characterization (Byrne et al. 2019; Spill et al. 2017). Alternatively, we can rely on data 169 

generated from high-quality 3D finite element (FE) analyses. To obtain a sufficient amount of 170 

data for training the proposed DL model, we used the 3D FE analysis results from Hu et al. 171 

(2021, 2022). In their study, high-fidelity 3D FE analyses were performed in Abaqus Explicit 172 

(ABAQUS 2014) to model the response of laterally loaded monopiles in multi-layered sandy 173 

soil. As shown in Figure 4, only half of the soil-pile domain was modeled in the FE analyses 174 
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due to the symmetric nature of the boundary value problem. Hexahedral linear elements with 175 

reduced integration (i.e., C3D8R elements) were used in the FE model. To minimize the 176 

boundary effect, the width of the soil domain was set at 20 times the pile diameter, and the 177 

thickness was set at twice the pile length. Given the large pile diameters of monopiles, fully-178 

coring mode was assumed, and thus both the soil inside and outside the pipe pile was modeled. 179 

The pile-soil interface was modeled following the perfect-contact approach, where the common 180 

nodes of the soil and pile are tied to each other. This was chosen due to the negligible difference 181 

in lateral load response of monopiles modeled by the perfect-contact approach and the contact-182 

pair approach, as demonstrated by Hu et al. (2021). 183 

A two-surface-plasticity sand model developed by Loukidis and Salgado (2009) was 184 

used in the analyses. Developed under a critical-state soil mechanics framework, the 185 

constitutive model closely captures mechanical behavior of sand under various stress paths. 186 

The model was calibrated against elemental test results (e.g., triaxial compression, triaxial 187 

extension, and simple shear) for Ottawa sand and Toyoura sand. With the properly-prepared 188 

mesh (Figure 4) and the realistic constitutive model, the FE analyses are able to accurately 189 

capture the stress-path dependent soil behavior, strain localization in soil, and the soil-pile 190 

interactions. The analyses were performed under fully drained condition using the effective 191 

stress approach given the relatively small loading rate for sandy soil (Han et al. 2017). 192 

Furthermore, the strain localization is controlled by the mesh size: the minimal mesh size is 193 

needs to be comparable to the shear band thickness expected in the sand. This technique has 194 

been used and verified by Loukidis and Salgado (2008) and Han et al. (2017). 195 

To validate the 3D FE analyses, Hu et al. (2021) and Hu et al. (2022) compared the 196 

results obtained from their FE analyses with those obtained from the full-scale lateral pile load 197 

tests performed as a part of the Pile Soil Analysis (PISA) project (Byrne et al. 2019; McAdam 198 
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et al. 2019). The pile load test was performed on a 10.5-m-long, 2-m-diameter open-ended steel 199 

pipe pile in medium dense to dense marine sand. The predicted and measured load–deflection 200 

curves at the mudline are in very close agreement. 201 

The dataset contains a large number (100000) of data points (also known as samples), 202 

each consisting of the input values (i.e., area moment of inertia for the pile cross section, pile 203 

length, CPT qc profile, and load eccentricity) and the corresponding outputs (i.e., lateral pile 204 

capacities H0.5 and H1 corresponding to pile rotation θ=0.5° and θ=1° at the mudline). In this 205 

research, CPT profile is directly used in the model instead of DR for two reasons. First, to use 206 

a DR-based model (or other soil property-based models), in-situ test results (such as qc) must 207 

be converted to DR. This conversion may introduce errors originating from factors such as K0, 208 

unit weight, water table, and friction angle. A CPT-based model can bypass the calculation of 209 

DR from qc and directly take qc profile as the model input. Furthermore, a CPT-based model is 210 

convenient for the users to apply, where they can directly input the CPT results into the model 211 

to obtain predictions for the lateral pile capacities without the need to estimate or assume soil 212 

properties. The CPT cone resistance profile is obtained using the Salgado and Prezzi (2007) 213 

equation developed based on cavity expansion theory:  214 

 𝑞𝑐 = 1.64𝑝𝐴exp[0.1041𝜙𝑐 + (0.0264 − 0.0002𝜙𝑐)𝐷𝑅] (
𝜎′ℎ

𝑝𝐴
)
0.841−0.0047𝐷𝑅

 Eq. 1 

 

where pA = reference stress = 100kPa, ϕc = critical-state friction angle in sand, DR = relative 215 

density in sand (DR=60 for 60% relative density), and σ'h = horizontal effective stress. Eq. 1 216 

has been tested in many prior studies (Han et al. 2017, 2019; Sakleshpur et al. 2021), and it 217 

provides qc values that are consistent to those estimated using the NGI method  (Clausen et al. 218 

2005): 219 

𝑞𝑐 = exp(𝐷𝑅/0.4)[22(𝜎′𝑣𝑝𝐴)
0.5] 

Eq. 2 
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where DR is expressed as fractions (e.g. DR=0.6 for 60% relative density), and σ'v = vertical 220 

effective stress.  221 

  222 

In order to obtain a robust DL model that is applicable to common design scenarios, the 223 

training samples should cover an extensive range of values for the input variables. Therefore, 224 

we consider broad-ranging values for pile length (6 m to 60 m), pile diameter (2 m to 10 m), 225 

load eccentricity (15 m to 30 m), pile diameter-to-wall-thickness ratio (40 to 100), and the 226 

relative density (35% to 90%) for the multi-layered sandy soils. All raw data used in this study 227 

is published in an open-access data repository (details provided in the data availability section). 228 

Since the CPT data (in the format of 1D vectors) vary in size depending on the pile 229 

length, we used Zero Padding (i.e., appending zeros to the end of the original data) to convert 230 

all CPT data into the same size. This is done because CNN accepts data of the same size as the 231 

input. This technique does not affect the predictions as the soil profile in the top layers controls 232 

L
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Figure 4 Finite element (FE) analyses of laterally loaded monopiles 
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the behavior of laterally loaded piles. Alternatively, Recurrent Neural Network (RNN), which 233 

is often used to deal with sequential data, can be used to handle input data of different sizes.  234 

2.2.2. Data transformation 235 

When generating the training samples, we maintained a uniform distribution for the 236 

input variables. For example, a pile diameter within the range from 2 m to 10 m is randomly 237 

selected for each sample. However, the uniform distribution for the input variables results in a 238 

highly non-symmetric, non-uniform distribution for the output values (i.e., pile capacities). In 239 

statistics, symmetry of a distribution about its mean can be measured by skewness �̅�3 (e.g., 240 

skewness = 0 represents a completely symmetric distribution): 241 

�̅�3 = 𝔼 [(
𝑥 − 𝜇

𝜎
)
3

] Eq. 3 

where x is the value of a data point in the distribution, μ is the mean of the distribution, and σ 242 

is the standard deviation of the distribution. As shown in Figure 5a and Figure 5b, the 243 

distribution of the outputs (i.e., pile capacities) for the training dataset is positively skewed (the 244 

distribution is concentrated toward the left side). There is significantly larger amount of data 245 

for piles with smaller lateral capacities, leading to better model performance and higher 246 

prediction accuracies for these piles. Conversely, piles with larger lateral capacities have less 247 

data for model training, leading to greater prediction errors for those piles. To reduce the dataset 248 

skewness and improve overall model performance, we will explore the effectiveness of two 249 

transformation methods (Atkinson et al. 2021):  250 
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 251 

Figure 5 Histograms of the outputs and transformed outputs in the generated dataset: (a) The 252 

distribution of the lateral capacity Ĥ0.5 corresponding to θ=0.5°; (b) The distribution of the 253 

lateral capacity Ĥ1 corresponding to θ=1°; (c) The distribution of the intermediate output 254 

ln(Ĥ0.5) after the natural logarithm transformation. (d) The distribution of the intermediate 255 

output ln(Ĥ1) after the natural logarithm transformation. (e) The distribution of the 256 

intermediate output Ĥ0.5
0.25 after the root transformation. (f) The distribution of the 257 

intermediate output Ĥ1
0.25 after the root transformation. 258 

Natural log transformation 259 

The natural log transformation is one of the most widely used methods to reduce 260 

skewness of a dataset when it is positively skewed, which is the case for the outputs (Ĥ0.5 and 261 

Ĥ1) in our dataset. Thus, we introduce a pair of intermediate outputs Ŷ0.5 = ln(Ĥ0.5) and Ŷ1 = 262 

ln(Ĥ1) that are used to train the DL model. Note that Ĥ and Ŷ refer to the ground-truth values 263 

whereas H and Y refer to the predicted values. As seen in Figure 5c and Figure 5d, the natural 264 

log transformation reduced the absolute value of skewness (|�̅�3|) for the original dataset by 265 
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more than 60% from about 1.3 to 0.6. After DL model training was done, the predicted 266 

intermediate outputs were transformed back to their original form to provide predictions for 267 

pile capacities: H0.5 = exp(Y0.5) and H1 = exp(Y1). 268 

Root transformation 269 

Another widely-used transformation method for positively skewed data is root-270 

transformation. In this study, the fourth root transformation was implemented to convert the 271 

original outputs (pile capacities Ĥ0.5 and Ĥ1) into intermediate outputs Ŷ0.5 = (Ĥ0.5)
0.25 and Ŷ1 272 

= (Ĥ1)
0.25

 for model training. The root transformation was successful in bringing the skewness 273 

of the original outputs down to almost zero (Figure 5e and Figure 5f). After the DL model was 274 

trained, these intermediate outputs were transferred back to their original form: H0.5 = (Y0.5)
4 275 

and H1 = (Y1)
4. 276 

2.2.3. Input normalization 277 

When training a DL model, the learning algorithm (e.g., Gradient Descent) iteratively 278 

updates the model parameters such that the prediction error is minimized. When the ranges for 279 

the input variables are significantly different (e.g., one input ranges from 1 to 2, whereas 280 

another input ranges from 10 to 10,000), the learning algorithm becomes slow or unstable, 281 

sometimes causing the learning to fail (Bishop 1995). To resolve this issue, input variables are 282 

often scaled (e.g., using normalization or standardization) into the same or similar ranges 283 

before they are used for training. In this paper, each input variable (X) is normalized with 284 

respect to its maximum and minimum values (Xmax and Xmin) using the MinMax normalization 285 

function: 286 



16 

 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
    Eq. 4 

After the normalization, all scaled input variables Xscaled fall between 0 and 1. 287 

2.2.4. Training, validation, and test sets 288 

In the development of a DL model, the full dataset is typically split into three separate 289 

subsets (i.e., training, validation, and test sets) that are used for different purposes. The largest 290 

portion of the full dataset is used to train the model parameters (e.g., the weights and biases 291 

shown in Figure 1) in the DL model, hence the name training set. Then, a small portion of the 292 

full dataset (separate from the training set), known as the validation set, is used to evaluate the 293 

model performance to avoid overfitting and underfitting issues. In case of unsatisfactory model 294 

performance, the hyperparameters, such as the learning rate, number of layers, and number of 295 

nodes in each layer, are adjusted, and the model is trained again using the training set. These 296 

two steps are repeated iteratively until satisfactory model performance is obtained for both the 297 

training and validation datasets. Finally, the trained model is assessed against the test dataset 298 

that has never been seen by the model. In this project, the training, validation, and test sets 299 

contain 90%, 5%, and 5% of the full dataset, respectively. 300 

The hybrid neural network was implemented using Python 3.9.7 programming 301 

language with Pytorch 1.10.2 as the DL framework. The training was conducted on a computer 302 

with the CPU of Intel Core-i9-10920X, Memory of 128 GB, and GPU of NVidia RTX A5000. 303 

It’s worth pointing out that the model’s training process was time consuming, taking 304 

approximately 20 hours. However, after the training is finished, generating a prediction from 305 

input values using the trained model takes only a fraction of a second. 306 
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3 RESULTS AND DISCUSSION 307 

3.1. Results 308 

A DL model is trained to minimize errors in predicting the outputs. The model error is 309 

quantified using a cost function, which captures the average error between the ground truth and 310 

prediction for all samples. Proper selection of the cost function is one of the keys to obtaining 311 

a good DL model. Among all commonly-seen cost functions, Mean Squared Error (MSE) is 312 

the most widely used for regression problems: 313 

𝑀𝑆𝐸 = 
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2            

𝑛

𝑖=1

 
Eq. 5 

where n is the number of samples, yi is the predicted output for the ith sample, and ŷi is the 314 

corresponding ground truth. Each cost function has its own limitations and strengths. MSE has 315 

a convex topology, which makes the optimization process (i.e., training) to minimize the cost 316 

function more reliable (Aravkin et al. 2014). However, a model trained with MSE equally treats 317 

the absolute error (difference between the predicted and ground-truth outputs) for each sample 318 

regardless of the magnitude of the output. This is problematic when the output variable spans 319 

a wide range of values, as is the case in this study. For example, an error of 100 kN is a 0.1% 320 

relative error for a ground-truth pile capacity of 100,000 kN, whereas the same error (=100 kN) 321 

is a 100% relative error for a pile capacity of 100 kN.  322 

To solve the aforementioned issue, we can instead use the Mean Absolute Percentage 323 

Error (MAPE), which calculates the relative error (percentage error) between the predicted 324 

output y and the ground-truth output ŷ: 325 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑

|𝑦𝑖 − �̂�𝑖|

�̂�𝑖
 × 100 

𝑛

𝑖=1

 
Eq. 6 
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MAPE is often used in practice due to its intuitive interpretation. However, optimizing 326 

MAPE is more computationally challenging than MSE because of its non-convex topology and 327 

non-differentiability (Chen et al. 2017; De Myttenaere et al. 2016).  328 

To investigate the effectiveness of different data transformation techniques combined 329 

with different cost functions on the model performance, we used the original dataset, natural 330 

log transformed dataset, and root transformed dataset to train the hybrid neural network model 331 

using either MAPE or MSE as the cost function. The model was trained for 600 epochs (the 332 

number of passes that the algorithm works through the entire training dataset) with a batch size 333 

(the number of training samples the algorithm works through before updating the model 334 

parameters) of 128 and a learning rate (the step size taken to adjust the parameters with respect 335 

to model’s error) of 0.001. The learning algorithm is ADAM (Kingma and Ba 2014), which is 336 

an extension of stochastic gradient descent. ADAM is more efficient in training neural 337 

networks with non-convex cost functions. 338 

Among the six trained models (i.e., three data transformation techniques combined with 339 

two cost functions), the one trained using natural log transformation and MSE cost function 340 

performs the best, providing consistent predictions with an average relative error MAPE = 2.67% 341 

for the model outputs. Figure 6 compares the predicted pile capacities H0.5 and H1 (for pile 342 

rotation θ=0.5° and θ=1°) versus the corresponding ground truths Ĥ0.5 and Ĥ1 for this model. 343 

Data points are closely located near the perfect-prediction line, indicating overall good model 344 

performance. We will compare results of the six models in detail in the next section. 345 
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 346 

Figure 6 Performance of the model trained with natural log transformed data and MSE cost 347 

function: the predicted pile capacities vs. the ground-truth pile capacities.  348 

3.2. Error Analysis 349 

In this section, we analyze errors for each of the six models trained with different data 350 

transformation techniques and cost functions. Figure 7 shows the relative error [(H−Ĥ)/Ĥ] for 351 

the predicted pile capacity as a function of the ground-truth value for all data points in the test 352 

set. In addition, we use the concept of Confidence Interval (68% CI and 95% CI) to show the 353 

probability that the relative error falls within a certain range of values. It is ideal to have the 354 

mean relative error close to zero and narrow CIs around it, while a wide CI for a certain range 355 

of pile capacity H reflects unreliable model predictions for that range of H. Since the model 356 

performances in predicting H0.5 and H1 are similar (Figure 6), we show the error analysis for 357 

H0.5 as an example.  358 
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 360 

Figure 7 The mean, 68%, and 95% confidence intervals for the models’ relative errors in 361 

predicting pile capacity H0.5: (a) Relative error for the model trained with MAPE using the 362 

dataset without transformation; (b) Relative error for the model trained with MAPE using 363 

natural logarithm transformed data; (c) Relative error for the model trained with MAPE using 364 

root transformed data; (d) Relative error for the model trained with MSE using the dataset 365 

without transformation; (e) Relative error for the model trained with MSE using natural 366 

logarithm transformed data; (f) Relative error for the model trained with MSE using root 367 

transformed data. Note that the relative error for the intermediate outputs [i.e., ln(H0.5) and 368 

H0.5
0.25] data are presented in the sub-figures. 369 

With no data transformation on the pile capacity H, the model trained with MAPE cost 370 

function results in consistent relative errors for the entire range of pile capacities (Figure 7a), 371 

whereas training with MSE causes significant relative errors (wider CI) for smaller pile 372 

capacities (Figure 7d). Since using the MSE cost function minimizes the squared error [SE = 373 

(H–Ĥ)2] between the predictions and ground truths, a model trained with MSE tends to produce 374 
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predictions for H with consistent SE values across the entire range of H. The consistent SE 375 

values result in absolute percentage errors (APE) that are sensitive to the magnitude of Ĥ: 376 

𝑀𝐴𝑃𝐸 =  |𝐻–Ĥ|/Ĥ =  √𝑆𝐸/Ĥ Eq. 7 

Thus, model trained with MSE without any data transformation tends to have larger relative 377 

error (MAPE) for piles with smaller capacity values Ĥ, and vice versa (Figure 7d). This is 378 

particularly true when the range of the output values is large, such is the case in this study (the 379 

pile capacity H ranges from about 100 kN to about 100,000 kN).  380 

Figure 7b and Figure 7e compare the performance of the two models trained with 381 

natural log transformation using MSE vs MAPE cost functions. After the natural logarithm 382 

transformation, the range for the intermediate output ln(Ĥ) shrinks drastically from the range 383 

for the original target output Ĥ (Figure 5). The mean decreases from 18633 for Ĥ0.5 to 9.14 for 384 

the intermediate output ln(Ĥ0.5), and the associated standard deviation (std) decreases from 385 

18621 for Ĥ0.5 to 1.37 for ln(Ĥ0.5). According to Eq. 7, when the ground-truth output [i.e., the 386 

intermediate output Ŷ=ln(Ĥ)] for a model has a small range of values, training the model with 387 

either MSE or MAPE cost function does not make a significant difference in the model 388 

performance for predicting the intermediate output Y (sub figures in Figure 7b and Figure 7e). 389 

This eventually results in similar model performances in predicting the ground-truth Ĥ 390 

[transformed back from Y to H=exp(Y)], as shown in Figure 7b and Figure 7e. 391 

Root transformation also reduces the range for output values (Figure 5). The mean 392 

decreases from 18633 for Ĥ0.5 to 10.39 for the intermediate output Ŷ= Ĥ0.5
0.25, and the 393 

associated standard deviation (std) decreases from 18621 for Ĥ0.5 to 3.23 for Ŷ= Ĥ0.5
0.25. Yet, 394 

root transformation does not reduce the output range as much as natural logarithm 395 

transformation does (Figure 5). Consequently, we see greater relative errors (i.e., wider CIs) 396 
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for smaller intermediate outputs (Ĥ0.25) for the model trained with MSE cost function (sub 397 

figure in Figure 7f), leading to the large relative errors for smaller pile capacities Ĥ (Figure 7f). 398 

Among the six models considered in this study, the model trained with MSE using 399 

natural logarithm transformed data is the most reliable one with MAPE = 2.59% and MAPE 400 

std = 2.16%. The model trained with MAPE using root transformation has a slightly smaller 401 

MAPE value (=2.55%) yet a greater std value (MAPE std = 2.42%). 402 

3.3. Which cost function and data transformation methods to choose?  403 

We often deal with geotechnical data that has a wide range of values with large data 404 

skewness due to the inherent variability and nonlinearity in the underlying geotechnical 405 

problems (e.g., pile capacities, footing settlement, and slope deformation). When developing a 406 

deep learning model to solve these problems, it is crucial to choose an appropriate combination 407 

of data transformation method and cost function to tackle the extensive range and skewed 408 

nature of the data. In this section, we derive theoretical errors and relative errors expected from 409 

using different data transformation techniques and cost functions. 410 

Table 1 summarizes how an error E (or relative error Er) associated with the 411 

intermediate output Y (at the end of training) is transformed to be the error (or relative error) 412 

for the target variable H. For example, a relative error Er for the intermediate output Y=ln(H) 413 

(i.e., natural log transformation) results in a relative error of ĤEr-1 for the target output H. This 414 

means when the model is trained with MAPE cost function, which ideally tends to produce 415 

consistent relative error Er for the whole range of intermediate output Y, the relative error 416 

(=ĤEr-1) for the target output H becomes dependent on the value of Ĥ: The relative error for Ĥ 417 

tends to increase with increasing Ĥ. As shown in Table 1, among the four combinations of data 418 

transformation methods and cost functions, training the model with natural log transformation 419 
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in conjunction with MSE cost function or training with root transformation in conjunction with 420 

MAPE cost function will result in consistent relative errors for the target output H that is 421 

independent of the value of H (or Ĥ).  422 

Ideally, a model trained with the MSE cost function tends to produce predictions with 423 

zero-mean randomly distributed errors (i.e., mean of errors=0). Similarly, a model trained with 424 

MAPE cost functions tends to produce predictions with zero-mean randomly distributed 425 

relative errors (i.e., mean of relative errors=0). In Figure 8, we further demonstrate how errors 426 

or relative errors for the intermediate output Y propagate into the relative error for the target 427 

output H. We assume a zero-mean evenly-distributed error or relative error for the intermediate 428 

output Y depending on the training cost functions. The second row of sub-figures shows the 429 

corresponding relative errors for the target variable H after the intermediate variable Y is 430 

transformed to H. As suggested by Table 1, training with two specific combinations of cost 431 

function and data transformation (MSE with log transformation and MAPE with root 432 

transformation) leads to consistent relative errors for the target output H. This is reflected in 433 

Figure 8 (bottom-left and bottom right sub-figures) as randomly distributed zero-mean relative 434 

errors that are independent of the value of H. In contrast, Training the model with log 435 

transformation and MAPE loss function causes the relative error for the target output H to 436 

increase with increasing value of H. Training the model with root transformation and MSE loss 437 

function results in decreasing relative errors for the target output H as H increases. These two 438 

combinations should be avoided in data treatment and model training to prevent inconsistent 439 

relative errors for predictions depending on the output value. 440 
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Table 1 Error analysis for different data transformation methods (for model outputs) trained 441 

with different cost functions 442 

Type of 

transformation 
Natural log Natural log Root Root 

Intermediate output 

Ŷ after 

transformation 

Ŷ = ln(Ĥ) Ŷ = ln(Ĥ) Ŷ = Ĥα Ŷ = Ĥα 

Cost function MSE MAPE MSE MAPE 

Error to be 

minimized* 
E2 = (Y-Ŷ)2 |Er| = |Y-Ŷ|/Ŷ E2 = (Y-Ŷ)2 |Er| = |Y-Ŷ|/Ŷ 

Predicted 

intermediate output 

Y 

Y=Ŷ+E Y=Ŷ(1+ Er) Y=Ŷ+E Y=Ŷ(1+ Er) 

Transformation back 

to target output H 

H=eY=  

eŶ+E 

H= eY 

= eŶ(1+ Er) 
H=Y(1/α) = (Ŷ+E)(1/α) H=Y(1/α) =[Ŷ(1+ Er)](1/α) 

Error for target 

output H (= H-Ĥ) 
eŶ+E- eŶ eŶ(1+ Er)- eŶ (Ŷ+E)(1/α)-(Ŷ)(1/α) [Ŷ(1+ Er)](1/α)-Ŷ(1/α) 

Relative error for 

target output H 

[=(H-Ĥ)/Ĥ] 

eE-1** ĤEr-1 (1+E/Ĥα)(1/α)-1 (1+ Er)(1/α)-1** 

*E is the error for the predicted intermediate output Y: E=Y-Ŷ; Er is the relative error for the predicted intermediate 443 
output Y: Er = (Y-Ŷ)/Ŷ. 444 
**These two combinations of cost function and data transformation result in consistent relative errors for the target output 445 
H that is independent of the value of H (or Ĥ).  446 
 447 

 448 

Figure 8- The propagation of error/relative error for the intermediate output Y to the relative 449 

error for the target output H. Random error E ranging from −0.2 to 0.2 is assumed for the 450 

intermediate output Y when training with the MSE loss function. Random relative error Er 451 

ranging from −2% to 2% is assumed for the intermediate output Y when training with the 452 

MAPE loss function. Data points marked with the same color are associated with the same 453 

samples before and after data transformation.  454 
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3.4. Sensitivity analysis for the qc profile 455 

To evaluate the susceptibility of the proposed ANN model to noise in the CPT data, a sensitivity 456 

analysis was done for a specific case characterized by a pile diameter of 8.5 m, a length of 457 

25.43 m, and a load eccentricity of 26.5 m. The influence of the CPT data noise on the model 458 

performance was assessed by creating 1000 variations of the qc profile. This was achieved by 459 

introducing random noise ranging from -10% to +10% into the baseline CPT data (Figure 9a). 460 

The lateral capacities H1 predicted based on these 1000 qc profiles follows a normal distribution 461 

(Figure 9b) with a remarkably low standard deviation (=0.6% of the mean value). This means 462 

that 68% of the predictions have relative errors less than 0.6%. This example shows the 463 

robustness of the proposed ANN model to the noise and uncertainties in the CPT data. The 464 

robustness of the ANN model is due to both the wide range of diverse data used for model 465 

training and the data augmentation technique used for data preparation (by adding noise to the 466 

qc profiles in training data). 467 

 468 
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 469 

Figure 9- Sensitivity of the predicted capacity H1 to the noise in CPT data (a) CPT with 470 

random relative noise ranging from -10% to +10%. (b) distribution of the pile lateral 471 

capacities predicted based on the noisy CPT data  472 

3.5. Training histories 473 

When tuning and evaluating a DL model, two model behaviors should be avoided: 474 

underfitting and overfitting. Underfitting means that the model cannot capture patterns in the 475 

dataset or identify the relationships between the inputs and outputs; this is reflected in large 476 

prediction errors for the training set. Overfitting, on the other hand, refers to the case when a 477 

model can produce good predictions for the training set, but it does not generalize well to the 478 

validation set, which is unseen by the model during training (Goodfellow et al. 2016; Patterson 479 

and Gibson 2017). Underfitting occurs when the DL model is too simple (i.e., with a small 480 

number of layers and nodes) or is not sufficiently trained (too few epochs), while too 481 

sophisticated model or exceedingly training a model may lead to overfitting.  482 
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Figure 10 shows the error histories for the model during the training. The MAPE error 483 

is calculated at the end of each epoch for both the training and validation datasets. As training 484 

continues, the model parameters keep being updated (by the ADAM training algorithm), and 485 

the prediction error continues to decrease. As shown in Figure 10, the errors for the training set 486 

and the validation set decrease following the same trend, suggesting that the model generalizes 487 

well to the validation set. Hypothetically, if the error for the validation set were significantly 488 

greater than that for the training set from the beginning of training, the model could be 489 

overfitted due to too complex model. If the error histories for the two sets first followed the 490 

same trend until they diverged at some point, that would suggest overfitting due to the model 491 

being overtrained beyond the divergence point.   492 

 493 

Figure 10 The loss history of learning and validation for the model trained with MSE using 494 

natural log transformation. (a) The loss history for H0.5 (b) The loss history for H1.  495 

3.6. Design example 496 

In order to demonstrate the performance of the developed Hybrid neural network model, 497 

we present a design example from Hu et al. (2022). A pipe pile with a diameter of 5 m, wall 498 

thickness of 5 cm, and length of 35 m is laterally loaded in multi-layered sandy soil (Figure 499 

11a). The lateral load is applied at a height of 15 m from the ground surface (load eccentricity 500 

(a) (b)
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h = 15m). The soil is fully saturated with the water table located at the ground surface. Figure 501 

11(b) shows the CPT cone resistance qc profile as a function of depth. The pile geometries, 502 

load eccentricity and the CPT qc profile were fed into the hybrid neural network model, 503 

producing predictions for the pile lateral capacities H0.5 = 7858 kN and H1 = 13442 kN 504 

corresponding to θ=0.5° and θ=1°. These two values of pile rotation were chosen because 1) 505 

they represent the serviceability limit states of the pile, and 2) they can be used to develop the 506 

entire load-rotation (H-θ) response for this monopile using (Eq. 8) proposed by Hu et al. 507 

(2022b): 508 

𝐻 =
𝜃

𝑘 + 𝜂𝜃
                                         

 

 

(Eq. 8) {
𝜂 = 2 𝐻1 − 1 𝐻0.5⁄⁄

𝑘 = 1 𝐻0.5 − 1 𝐻1⁄⁄
                                  

For comparison purposes, the p-y analysis was performed for this pile using the web-509 

based application [Lateral Analysis of Piles (LAP)] (Doherty 2017). A three-layer soil profile 510 

(Figure 11a) was considered in the p-y analysis using the API sand p-y curves. The 3D FE 511 

analysis was performed following the simulation setup detailed in Hu et al. (2022). As shown 512 

in Figure 11b, the proposed DL model provides accurate predictions for the lateral load 513 

response of the monopile. The p-y analysis, which was originally developed for long and 514 

slender piles, significantly overestimates the lateral capacities of the pile (Figure 11c). 515 
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 516 

 517 

Figure 11 (a) Soil profile and the corresponding relative densities and thicknesses; (b) The 518 

CPT cone resistance profile; (c) The load rotation response curves obtained from the 3D FE 519 

model, DL model, and the p-y analysis. The p-y analysis overestimates the lateral pile 520 

capacity by 75%; the DL model could predict the capacity well with a relative error of 2.45%. 521 

4 PILE DESIGN OPTIMIZATION 522 

Given its ability to deliver rapid and precise predictions, the proposed ANN model can 523 

function as a surrogate model, approximating complex FE models. This allows for the 524 

execution of computation-heavy procedures like design optimization or system modeling that 525 

necessitate the simulation of numerous design instances. Surrogate models substantially cut 526 

down the computational cost of optimization, paving the way for more rapid design iterations 527 

and aiding in pinpointing the most effective solutions. To demonstrate a practical application 528 

of the trained surrogate model, we conduct optimization for a design example aiming to 529 

minimize the material cost for the monopile whiling satisfying a set of constraints, including 530 

specified ranges for slenderness ratio, wall thickness ratio, and the pile diameter as well as 531 

meeting the required lateral capacity. The optimization problem is formulated as: 532 
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Min. ρπBtwL 533 

Subject to:  534 

(1) H1 ≥ Ĥ1 535 

(2) 3 ≤ L/B ≤ 15 536 

(3) 40 ≤ B/tw ≤ 100 537 

(4) 2 ≤ B ≤ 10 538 

where B, tw, and L are the pile diameter, wall thickness, and length, respectively. H1 is the 539 

lateral capacity of the optimized solution, and Ĥ1 is the desired capacity. One specific design 540 

example was selected for optimization. The initial pile dimensions are B = 6.87 m, tw = 0.15 m, 541 

L = 31 m, load eccentricity h = 26.5 m, and the corresponding lateral capacity Ĥ1=18007 kN. 542 

The initial weight of the pile is 787,824 kg. The Sequential Quadratic Programming (SQP) 543 

algorithm was used to optimize the pile design. The SQP algorithm is an iterative optimization 544 

used to solve nonlinear constrained optimization problems. In each iteration, it constructs a 545 

quadratic approximation of the objective function and a linear approximation of the constraints 546 

to form a Quadratic Programming subproblem. The solution to this subproblem then provides 547 

a search direction for an iterative line search procedure, and this process repeats until the 548 

convergence criteria are met or the maximum number of iterations is reached. The SQP 549 

algorithm takes about 10 minutes to output the optimized solution: B = 8.5 m, tw = 0.085 m, 550 

and L = 25.43 m. This optimized pile design provides the same lateral capacity (18007 kN) as 551 

the original design, but the weight of the optimized pile is 450,676 kg, which is 42% less than 552 

that for the original design. Figure 12 shows the history of the pile weight and the 553 

corresponding pile capacity during the optimization process. 554 
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 555 

Figure 12-  (a) CPT qc profile considered for the pile design optimization example. (b) 556 

Solution history for the pile design optimization with the objective to reduce the material cost 557 

for the monopile while providing the required lateral capacity.  558 

5 CONCLUSIONS AND DISCUSSIONS 559 

A hybrid neural network model was developed to provide fast and accurate predictions 560 

of the lateral capacities for large-diameter monopiles. The neural network contains a series of 561 

convolutional layers that captures the soil behavior (via CPT cone resistance data) and fully-562 

connected layers that accounts for the impact of pile geometry, load eccentricity and the pile-563 

soil interactions on the lateral pile load response. To train the model, synthetic data were 564 

generated based on validated 3D finite element analyses covering a wide range of design 565 

scenarios. The developed neural network model is able to provide accurate capacity predictions 566 

(mean average error = 2.68%). The developed ANN model was then integrated into Sequential 567 

Quadratic Programming (SQP) to optimize pile design, minimizing material cost (by 42%) 568 

while satisfying the capacity requirement. 569 



32 

 

Highly skewed distribution of the output variables in the training dataset adversely 570 

affects the performance of deep learning models. The natural logarithm transformation and root 571 

transformation techniques can effectively reduce the skewness of the output distribution. These 572 

data transformation techniques need to be used in pairs with specific training cost functions to 573 

achieve the best model performance: The natural logarithm transformation should be used with 574 

the MSE cost function, whereas the root transformation should be used with the MAPE cost 575 

function to provide predictions with consistent relative percentage errors that are independent 576 

of the model output values. This is particularly useful when the output spans a large range of 577 

values.  578 

The proposed neural network model has many advantages when compared with high-579 

fidelity 3D FE model: 1) The proposed model can generate predictions with high accuracy at a 580 

much faster rate compared to a 3D FE model. While a 3D FE analysis may take 2-7 days 581 

depending on the model size (larger piles taking longer runtime due to more elements), the 582 

proposed model can generate predictions in just a fraction of a second. The proposed model is 583 

an excellent surrogate for the 3D FE model, enabling large-scale system-level modeling, 584 

optimization, and resilience analysis; 2) The proposed method is data-driven, and it eliminates 585 

the need for users to possess specialized knowledge, such as meshing and constitutive model, 586 

which are crucial for performing high-quality FE analyses; and 3) Trained with a large dataset 587 

that covers broad-ranging values for design inputs, the developed model is versatile and 588 

adaptable. It can serve as the base model that can be easily adapted for specific design scenarios 589 

(e.g., a special site condition) with only a small amount of data using the transfer learning 590 

technique.  591 

The model can be further strengthened in terms of robustness and reliability by training 592 

with more diversified soil types (e.g., over-consolidated soils) and pile types (e.g., concrete 593 
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piles). This hybrid neural network framework can also be easily extended to solve other 594 

geotechnical problems (e.g., axially loaded piles and shallow foundations).  595 

6 DATA AVAILABILITY 596 

The raw dataset used to train the proposed hybrid neural network is published at the 597 

open-access Zenodo data repository (https://doi.org/10.5281/zenodo.7675229). 598 

  599 
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NOTATION   600 

L pile length 601 

B outer diameter of pile 602 

tw wall thickness of pile 603 

Ip area moment of inertia of pile 604 

h load eccentricity  605 

DR relative density of sand 606 

θ pile rotation at the mudline 607 

Ĥ ground-truth pile lateral capacity  608 

H estimated pile lateral capacity  609 

Ĥ0.5  ground-truth pile lateral capacity corresponding to a pile rotation θ = 0.5 610 

at mudline 611 

H0.5  estimated pile lateral capacity corresponding to a pile rotation θ = 0.5 at 612 

mudline 613 

Ĥ1 ground-truth pile lateral capacity corresponding to a pile rotation θ = 1 at 614 

mudline 615 

H1  estimated pile lateral capacity corresponding to a pile rotation θ = 1 at 616 

mudline 617 

�̅�3 skewness of the distribution 618 

   619 
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8 APPENDIX 769 

Table 2- Parameters and their ranges for the training data; i represents the layer number (3 770 

layers of sand). SI units are used for parameters 771 

Parameter Symbol Parameter value, distribution, or 

formula 

Pile diameter (m) B ~ Uniform (2, 8) 

Pile length (m) L = 3B + 12B × Uniform (0,1) 

Wall thickness ratio B/tw ~ Uniform (40, 100) 

Inner diameter (m) ID = B - 2 × wall thickness 

Area moment of inertia (m4) Ip = π × (B4 - ID4) / 64 

Load eccentricity (m) h ~ Uniform (15, 30) 

Thickness of layer 1 (m) t1 = 0.5B + (L-0.5B) × Uniform (0,1) 

Thickness of layer 2 (m) t2 = (L - t1) × Uniform (0,1) 

Thickness of layer 3 (m) t3 Total soil domain thickness-t1-t2  

Relative density (%) DR ~ Uniform (35, 90) 

Effective unit weight (kN/m3) γ' = (Gs-1)γw/(1 + e)  

Vertical effective stress, calculated each 0.2 

m in depth (kPa) 

σ'v Calculated cumulatively from γ' 

Horizontal effective stress, calculated each 

0.2 m in depth (kPa) σ'h 

= K0 × σ'v 

CPT cone resistance (MPa) qc  Calculated using Eq. 1 
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