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Abstract 

This paper presents a novel sensor clustering-based time series approach for anomaly detection. 

The basic idea of this approach is that localized change in the properties of a structure may affect the 

relationship between the accelerations around the position where the damage occurs. Therefore, for 

both healthy and damaged (or unknown state) structures, Auto-Regressive Moving Average Models 

with eXogenous inputs (ARMAX) are created for different clusters using the data from the sensors 

in these clusters. The difference of the ARMAX model coefficients are employed as damage 

features (DFs) to determine the existence, location and severity of the damage. In order to verify this 

approach, it is first applied to a 4-DOF mass spring system and then to the shear type IASC-ASCE 

numerical benchmark problem. It is shown that the approach performs successfully for different 

damage patterns. It is also demonstrated that the approach can not only accurately determine the 

location and severity of the damage, but can also distinguish between changes in stiffness and mass. 

mailto:mustafa.gul@ualberta.ca
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1 Introduction 

As infrastructure systems age and deteriorate, the focus of civil engineers and researchers 

gradually shifts from the design of structures to the maintenance of structures. The importance of 

developing robust automated systems that can detect anomalies in structures caused by either 

deterioration or extreme loading has been widely recognized in recent decades (Bernal and Beck 

2004; Fan and Qiao 2011; Inaudi and Glisic 2008; Lynch and Loh 2006). In this context, Structural 

Health Monitoring (SHM) is acknowledged as an invaluable tool to assess the condition of critical 

infrastructures. In the last couple decades, owing mostly to the rapid progress of modern 

technologies, especially in the areas of computer science and electrical engineering, data acquisition 

has become much easier than ever before. Due to wider availability of the related technologies, 

various SHM techniques have been applied in different contexts (Pandey et al. 1991; Hearn and 

Testa 1991; Hou et al. 2000; Im et al. 2011; Moaveni et al. 2012; Han et al. 2014; Dharap et al. 

2006). In particular, a number of long-term monitoring systems have been installed on bridges and 

buildings. 

In general, SHM methods can be classified into two types, local methods and global methods 

(Johnson et al. 2004). Local methods aim to detect the damage in a localized region at a particular 

time using various techniques such as ultrasonics and x-ray (Kessler et al. 2002; Hola and 

Schabowicz 2010; Cheng and Tian 2012). Global methods, also widely known as vibration-based 

methods, assess the condition of the entire structure using the dynamic response of the structure. 

Vibration-based methods are economical and effective in assessing the overall health of the 
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structure, although some issues, such as the following, must be resolved before they are applied in 

reality (Beck and Bernal 2001): (1) modal characteristics are generally very insensitive to localized 

damage and damage may not be detected by damage features extracted from modal frequencies or 

mode shapes; (2) input force usually excites only the lower modes; (in many cases, such as ambient 

vibrations, the input signals cannot even be recorded); (3) the dynamic response data are available 

only at certain positions due to the limited number of sensors; and (4) an inverse problem needs to be 

resolved since the change of dynamic responses does not directly show what physical parameters 

have changed.  

To overcome these issues, a number of parametric or non-parametric methods based on 

vibration data have been proposed (Gül and Catbas 2009; Nigro et al. 2014; Meruane and Heylen 

2011; Ji et al. 2010). Parametric techniques aim to develop physics-based models for damage 

detection, most of which need to interact with finite element models (Shiradhonkar and 

Shrikhande 2011; Jafarkhani and Masri 2011; Moaveni 2009, Sipple and Sanayei 2013). Although 

these approaches are very effective in establishing a direct relationship between the DFs and the 

physical characteristics of the structure, developing the necessary models and analyzing the data 

may require significant experience, and for some cases the model may not even be identified 

correctly using limited data (Catbas et al. 2007). Given these factors, non-parametric methods 

using algorithms such as neural networks and time series analysis have recently attracted 

significant attention (Chang et al. 2000; Sohn et al. 2001, Taha 2010; Carden and Brownjohn 

2008). 
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In this paper, a non-parametric method using time series analysis is introduced for damage 

detection. A time series is a sequence of data with uniform time intervals. Typical time series 

includes population, stock price, and temperature. Time series analyses are in general used to 

analyze time series data in order to extract the statistical characteristics of the data sets. Common 

time series models include Auto-Regressive (AR) models, Moving Average (MA) models, and 

Box-Jenkins (B-J) models. Early in their development, these methods had been mainly used in 

economics and electrical engineering. In 2001, Sohn et al. (2001) demonstrated a time series 

approach to detect damage. They combined Auto-Regressive models (AR models) with 

Auto-Regressive models with exogenous inputs (ARX models), and defined the residual error as the 

DF to detect damage. Subsequently, time series analysis garnered significant attention from 

researchers in the SHM area due to its potential for automated analysis. 

More recently, significant effort has been spent developing the capability to detect, locate, and 

quantify damage. Monroig and Fujino (2006) derived an approach using second-order ARX models 

based on the equation of motion of a structure. They applied their approach to a structure similar to 

the ASCE benchmark problem in Bernal and Beck (2004). The results of their study were promising, 

showing that damage can be identified and located, although there were some false-positive and 

false-negative results. Gül and Catbas (2009) tested a statistical pattern recognition methodology in 

the context of time series analysis using different laboratory structures, showing that this 

methodology works well in most cases. However, they also identified some issues that would have 

to be resolved before applying this approach in a realistic structure, such as the determination of the 
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threshold. Figueiredo et al. (2012) applied time series models to data obtained using a piezoelectric 

active-sensing technique and extracted DFs as parameters of the models. Correlation analysis and 

principle component analysis were then used to determine the damage state, and a machine 

learning algorithm was adopted to remove the effect of environmental variability. The 

experimental results from a composite plate demonstrated that damage can be correctly identified. 

1.1 Objective and Scope 

As summarized above, time series modeling has great potential as a tool for damage detection. 

However, there are still a number of issues that must be addressed before it can be effectively used in 

real-life structures. In this paper, a novel damage detection method applying an Auto-Regressive 

Moving Average model with eXogenous inputs (ARMAX model) is presented. Developed based on 

previous work conducted by the authors (Gül and Catbas 2011; Mei and Gül 2013), the novelty of 

this approach compared to other approaches is that it can identify changes in the stiffness and mass 

of the system separately using the output-only data. The proposed method can accurately identify, 

locate, and quantify changes to these physical parameters in the numerical case studies with artificial 

noise investigated, enabling estimation of the location and extent of the damage. The following 

sections discuss the theoretical basis of the proposed methodology, along with results from the case 

studies. Current limitations of the methodology, such as being applicable only to shear-type 

structures in the current form, are also discussed. 
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2 Outline of damage detection method and underlying theory 

2.1 Time series modeling 

The time series model used in this paper is the ARMAX model. A brief introduction to this 

model is given below. Further details about this model can be found in the literature (Box et al. 2013; 

Brockwell and Davis 2002). The basic form of the ARMAX process with no delay term is given in 

Eq. (1), 
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where y(t) is the output, u(t) is the input of the model, e(t) is the error term, and

1 1 1, , , , ,
a b cn n na a b b d dL L L are the parameters of the model. It is usually convenient to use the more 

concise form in Eq. (2), 

 ( )A(q)y(t) B(q)u(t) D q e(t)= +  (2) 

in which q is a back shift operator, meaning that a variable, say X(t), at time t multiplied by qj is 

equal to X(t-jΔt). Therefore, the coefficients A(q), B(q), and D(q) can be expressed in Eq. (3) by 

comparing Eq. (1) and Eq. (2); na, nb and nc are referred to as the orders of the parameters. ARMAX 

modeling is a more general form of AR modeling and Moving Average (MA) modeling. The time 

series y(t) is called an AR process with order na if nb and nc are both zero, and an MA process with 

order nc if na and nb are zero. The exogenous inputs in ARMAX refers to u(t) in Eq. (2), which is a 

different sequence than y(t). 
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2.2 Creating the ARMAX models for different sensor clusters 

Shown in Eq. (4) is the equation of motion for an N degrees of freedom (DOF) linear dynamic 

system (time, t, has been omitted), which reveals the relationship between the dynamic response and 

excitation, where M, C, and K represent the mass, damping, and stiffness properties of the system, 

respectively. The vectors ,&& &x x , and x  correspond to accelerations, velocities, and displacements, 

respectively. The external forcing functions on the system are denoted by f. 

 ( ) ( ) ( ) ( )t t t t+ + =&&Mx Cx Kx f  (4) 

In order to fit the dynamic responses of the system to ARMAX models in the context of the 

proposed methodology, some transformations must be conducted. First, the ith row of Eq. (4) is 

considered separately as in Eq. (5). Re-arranging Eq. (5), Eq. (6) is obtained to represent the 

acceleration term of the ith channel in terms of the other terms. Assuming that the structure has a 

lumped mass matrix, the acceleration terms on the right side are removed, since any off-diagonal 

entries of the mass matrix are zero. In addition, according to our investigation, the damping terms 

make very little contribution to the balance of the equation. Therefore, we neglect the damping 

terms as in Eq. (7). Considering that it is usually not practical to measure the displacement data in 

real-life applications, efforts are made to eliminate these terms from Eq. (7). By taking the second 

derivative of Eq. (7), we obtain the fourth derivative of x on the left side and accelerations on the 
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right side as in Eq. (8). Eq. (9) can then be obtained by applying the forward difference method 

(Levy and Lessman 1992) twice to Eq. (8); (the symbol, t, is added in these equations for further 

clarity).  

 ( ) ( ) ( )1 1 1 1 1 1i iN N i iN N i iN N im x m x c x c x k x k x f+ + + + + + + + =&& && & &L L L  (5) 
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In Eq. (9), we can see that ( )ix t&&  appears on both sides, which may lead to trivial solutions to 

the parameters of the ARMAX models. To resolve this problem, we define ( ) ( )i ix t t x t+  −&& &&  as a 

new sequence ( )iy t . The final form of the equation is given as Eq. (10), where we can see the relation 

between signals in different sensors reflects a function of the system’s intrinsic properties (m and k). 

It is therefore expected that any change in mass and stiffness will be exposed by the change in the 

coefficients of the ARMAX model if a proper DF is chosen based on the model coefficients. 

 1 1 2 2

2

( ) ( ) ( ) ( ) ( )i i i i i iN N

ii ii

y t t y t f k x t k x t k x t

t m m

+  − + + +
= −



&& && && &&L
 (10) 



 

9 

 

Comparing Eq. (10) to the ARMAX model in Eq. (1), ( )iy t  and ( )ix t&&  are considered as output 

and input terms, respectively. The errors introduced by ignoring the damping terms and the second 

derivative of the excitation force can be incorporated into the error terms if we assume they are 

normally distributed. Therefore, the orders na and nb for the ARMAX model can be chosen as 1 and 

1 by comparing the corresponding output and input terms. According to the investigation, nc is 

taken as 3 in order to incorporate the influence of errors caused by random ambience force, noise, 

and by ignoring damping terms. Finally, the ARMAX model for the ith DOF can be expressed as in 

Eq. (11), 

 1 1 2 2 1 2( ) ( ) ( ) ( ) ( )i i i i

i i N Ny t t a y t b x t b x t b x t e(t) d e(t t) d e(t t)+ + = + + + + + − + −&& && &&L  (11) 

The ARMAX model above is for the ith row in the equation of motion. Therefore, N different 

ARMAX models can be established for the whole system. Since stiffness and mass matrices are 

both sparse matrices, the signal of a sensor is expected to be only related to the signals in its 

adjacent sensors. The ARMAX models can therefore be simplified further, such that only the 

reference channel and its adjacent channels are included in each ARMAX model. In this respect, 

we define the sensors adopted by one ARMAX model as a sensor cluster, and the corresponding 

sensor for output as the reference channel for this sensor cluster. 

Building two sets of ARMAX models for the baseline and damaged (or unknown state) 

structures using the process described above, damage can be identified, located, and quantified by 

extracting proper DFs from the model coefficients. In the proposed approach, the DF is taken as the 
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relative difference of B(q) coefficients of damaged and baseline structures. The form of the DF is 

shown in Eq. (12). 

 
, ,

,

100%,  ,  

i i

j baseline j damaged

ij i

j baseline

b b
DF i sensor clusters j adjacent sensors

b

−
=     (12) 

In the next two sections, two case studies are presented where the proposed method is applied 

to two different numerical models. It is shown that damage can be accurately identified, located, 

and quantified using output-only acceleration data. 

3 Case Study I: 4-DOF Mass Spring System 

In Case Study I, a 4-DOF mass-spring system (Figure 1) similar to the one used in previous 

studies (Gül and Catbas 2011; Mei and Gül 2013) is used in this paper. The properties of this 

system are defined as 1 3500m kg= , 2 3 2500m m kg= = , 4 2000m kg= ,
7

1 2 10 /k N m=  and 

7

2 3 4 5 7 10 /k k k k N m= = = =  . The stiffness and mass matrices of this system can easily be 

expressed as in Eq. (13) and Eq. (14). 

 

Figure 1. Numerical 4-DOF mass spring model for verification 

 

m1 

k1, c1 k2, c2 

m2 

k3, c3 

m3 

k5, c5 

k4, c4 

m4 



 

11 

 

  (13) 

  (14) 

The classic Rayleigh damping matrix is constructed assuming the damping ratio is 3% for the 

first two modes. The coefficients a0=0.72 and a1=0.0011 are solved from the first and second natural 

frequencies of the system. 

 
0 1ij ij ijC a M a K= +  (15) 

For this system, five damage patterns are simulated, including stiffness, mass, and damping 

reduction, as follows:  

1) 20% reduction in stiffness k2;  

2) 20% reduction in stiffness k2 and 10% reduction in stiffness k4;  

3) 20% reduction in mass m4;  

4) 20% reduction in stiffness k2 and 20% reduction in mass m2 

5) 20% reduction in damping C33;  

6) Combination of damage patterns 1, 3, and 5. 
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The excitations are generated as white noise acting on all the DOFs simultaneously in order to 

simulate the ambient vibration. In order to make the simulations more realistic, 10% noise is added 

to the signals at all DOFs.  

According to the ARMAX-based approach described above, four sensor clusters with different 

reference channels are created for this system. The first sensor cluster is created with the first DOF 

as the reference channel, and it includes the first, second, and third DOFs as the adjacent DOFs. For 

the second sensor cluster, the second DOF is considered as the reference channel and all the DOFs 

are included as the adjacent channels since this DOF is connected to all the DOFs. The third sensor 

cluster consists of the first, second, and third DOFs and the reference channel is the third DOF. The 

last sensor cluster only contains the second and fourth DOFs and the reference channel is the fourth 

one. Creating the ARMAX models for these four sensor clusters using the data from baseline and 

damaged structures, the DFs defined in Eq. (12) are extracted.  

3.1 Damage Pattern 1: 𝑘̂2 = 0.8 × 𝑘2 

The first damage pattern simulates a reduction of 20% for stiffness k2 between the first and 

second blocks. Table 1 is obtained by applying the DFs mentioned above. Each row of Table 1 

represents a sensor cluster, and the four columns of the tables represent the adjacent sensors in the 

sensor clusters. For instance, the first row is for the first sensor cluster, which has the first DOF as 

the reference channel. The first sensor cluster includes the first, second, and third DOFs which are 

connected to it, so the fourth column of the first row is not applicable (N/A). For convenience, the 
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DFs can each be indexed by their location in the table. For example, the DF in the first row and 

second column is defined as DF12. It is observed in this table that the DFs for the third and fourth 

DOFs are close to zero, indicating that the damage is far from these DOFs. The non-zero DFs in the 

top-left corner show that the damage is related to DOF 1 and DOF 2. The magnitudes represent the 

contribution of the stiffness reduction. It can be seen in Table 1 that the DF21 is -18.88% and DF12 is 

-18.87%, both of which are very close to -20%, which is the applied damage. This indicates the 

extent of the stiffness reduction in k2, which is between the first and second DOFs. The -8.90% and 

-6.61% changes for DF11 and DF22, respectively, are caused by the fact that a 20% decrease in k2 

introduces an 8.75% decrease in the total stiffness associated with the first DOF (0.2k2/K11 = 

0.2×7×107/(160×106) = 8.75%), and creates a 6.67% decrease in the total stiffness associated with 

the second DOF (0.2k2/K22 = 0.2×7×107/(210×106) = 6.67%). Especially considering the 10% 

artificial noise added to the data, these results are deemed very successful in locating and 

quantifying the damage. 

Table 1. Damage features (%) for DP1 in the mass spring system 

Reference Channel 1st 2nd 3rd 4th 

1st  -8.90 -18.87 -0.91 N/A 

2nd  -18.88 -6.61 -0.18 0.33 

3rd  -0.17 0.08 -0.06 N/A 

4th  N/A -0.13 N/A -0.27 
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3.2 Damage Pattern 2: 𝑘̂2 = 0.8 × 𝑘2, 𝑘̂4 = 0.9× 𝑘4 

Damage pattern 2 is obtained as damage pattern 1 plus the reduction of 10% to the element 

stiffness k4. From Figure 1, we can see that k2 is related to DOFs 1 and 2, and k4 is related to DOFs 2 

and 4. In Table 2, it is observed that DF11, DF12, DF21 are almost the same as those in Table 1, which 

again locate and quantify the damage caused by the reduction of k2. Similarly, the DF24, DF42, DF44 

between DOFs 2 and 4 with magnitudes of around 10% also represent the influence of the reduction 

of k4. The effect of the reduction of k2 and k4 on the diagonal stiffness for DOF 2 is 

(0.2k2+0.1k4)/K22 = (0.2+0.1) ×7×107/(210×106) = 10.00%, which is exactly reflected by the value 

of DF22. It should be emphasized that the reduction of 10.56% for DOF 4 is consistent with the 10% 

reduction in k4 since this is the only spring connected to DOF 4. Theoretically, Table 2 should be 

symmetrical since the stiffnes matrix is symmetrical. The slight asymmetry is mainly caused by 

the introduced artificial noise. Finally, it is also noted that the 2.33% reduction in DF23 can be 

considering as a false positive. For such cases, determining a threshold based on statistical analysis 

of DFs obtained from multiple data sets could be very useful (Gül and Catbas 2009). Such a study is 

not in the scope of this article. 

Table 2. Damage features (%) for DP2 in the mass spring system 

Reference Channel 1st 2nd 3rd 4th 

1st  -8.10 -19.73 0.88 N/A 

2nd  -18.22 -10.42 -2.33 -8.62 

3rd  0.10 0.45 -0.85 N/A 

4th  N/A -10.67 N/A -10.56 
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3.3 Damage Pattern 3: 𝑚̂4 = 0.8 × 𝑚4 

In the third damage pattern, instead of stiffness reduction, the mass of the fourth DOF has a 

reduction of 20%. It can be seen from Table 3 that this reduction results in the increase for DF42 and 

DF44 around 23-24%, which are both in the fourth sensor cluster. These DFs are explained in Eq. 

(10), where the mass term is in the denominator and the reduction of this mass by 20% will increase 

the parameters of the entire sensor cluster by 1/(1-0.2) = 25%. It should be noted that the DFs for 

the change of mass are asymmetrical, with a very different layout than that for the change of 

stiffness. This phenomenon is considered as a main characteristic to distinguish between the change 

of mass and stiffness. 

Table 3. Damage features (%) for DP3 in the mass spring system 

Reference Channel 1st 2nd 3rd 4th 

1st  0.02 -0.82 -0.79 N/A 

2nd  0.31 0.24 -0.41 -0.26 

3rd  -0.70 -0.09 0.38 N/A 

4th  N/A 22.63 N/A 23.91 

3.4 Damage Pattern 4: 𝑘̂2 = 0.8 × 𝑘2,  𝑚̂2 = 0.8 × 𝑚2 

Damage Pattern 4 demonstrates that the damage caused by stiffness and mass change at the 

same location. As shown in Table 4, the active DFs concentrate on the first and second sensor 

clusters. In the first row of Table 4, DF11 and DF12 are close to the corresponding ones in Table 1, 

which reveal the change of stiffness occurs for DOF 2. The second row shows two features due to 

the combination of two kinds of damage. DF23 and DF24 present the pattern mainly introduced by 
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the mass change without the influence of the stiffness change. DF21 and DF22 are as a result of the 

superposition of these two types of damage. In practice, the asymmetry of the DFs is considered as 

the first step to identify the change of mass, and then specific analysis can be conducted to 

determine which combination occurs. 

Table 4. Damage features (%) for DP4 in the mass spring system 

Reference Channel 1st 2nd 3rd 4th 

1st  -8.89 -19.52 -0.55 N/A 

2nd  2.91 16.59 24.18 24.96 

3rd  0.56 -0.86 -0.48 N/A 

4th  N/A 0.36 N/A 0.02 

 

3.5 Damage Pattern 5: 𝐶̂33 = 0.8 × 𝐶33 

In previous damage patterns, the damping matrix has been kept the same even when the mass 

and stiffness parameters are changed. In this damage pattern, one element of the matrix, C33, is 

reduced. Although our approach does not seek to identify the change of damping, we would still aim 

to determine whether or not the damping change will disturb the detection of other changes such as 

stiffness and mass. In Table 5, it is demonstrated that all the damage features are very close to zero, 

such that the 20% reduction of C33 does not contribute to the DFs. It is therefore expected that the 

changes of other properties can be identified separately, even if they may lead to a change of 

damping. 

Table 5. Damage features (%) for DP4 in the mass spring system 
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Reference Channel 1st  2nd  3rd  4th  

1st  -0.13 0.81 0.60 N/A 

2nd  0.86 -0.31 0.98 0.40 

3rd  0.23 0.96 -0.21 N/A 

4th  N/A 1.28 N/A 0.04 

3.6 Damage Pattern 6: 𝑘̂2 = 0.8 × 𝑘2, 𝐶̂33 = 0.8 × 𝐶33 and 𝑚̂4 = 0.8× 𝑚4 

To verify the ability to detect various damages at different locations simultaneously, the last 

damage pattern is introduced, which is a combination of damage patterns 1, 3, and 5. The DFs for 

this damage pattern are shown in Table 6. In the top-left corner, the DF11, DF12, DF21, and DF22 are 

similar to the corresponding values shown in Table 1, which indicates that the reduction of stiffness 

has been detected, located, and quantified. For the fourth row, DF42 and DF44 represent the reduction 

of mass in the system. It can also be seen that the change of damping has no influence on the DFs. 

Table 6. Damage features (%) for DP5 in the mass spring system 

Reference Channel 1st  2nd  3rd  4th  

1st  -8.57 -18.52  -0.08  N/A  

2nd  -17.67  -6.35  -0.06  0.84  

3rd  -0.28  0.68  -0.10  N/A  

4th  N/A  24.19  N/A  23.87  

4 Case Study II: Application to the IASC-ASCE Benchmark problem 

In order to accelerate the development of SHM methods, some typical benchmark problems 

that define the realistic conditions and allow researchers to compare the performance of their 
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respective approaches are necessary. In consideration of this, a task group supported by the 

International Association of Structural Control (IASC) and the Dynamics Committee of the 

American Society of Civil Engineers (ASCE) was formed in 1999 (Bernal and Beck 2004; Johnson 

et al. 2004). The structure selected by this group for investigation was a 4-storey shear type steel 

frame located at the Earthquake Engineering Research Laboratory of the University of British 

Columbia (Black and Ventura 1998). As shown in Figure 2, the structure is 2-bays by 2-bays and 

3.6 m tall, with a 2.5 m × 2.5 m base. 

 

Figure 2. Illustration of the ASCE Benchmark Structure (adapted from Johnson et al. 2004) 

A number of research groups have made efforts to apply various approaches to this 

benchmark problem, either numerically or experimentally. Caicedo et al. (2004) developed an 
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approach combining natural excitation technique, eigensystem realization algorithm, and least 

squares method to estimate the stiffness of the ASCE benchmark structure using simulated data. 

With mass and acceleration information, the approach can correctly detect the location and extent 

of the damage. Nair et al. (2006) used the Auto-Regressive Moving Average (ARMA) model to fit 

either analytical or experimental vibration signals of the ASCE benchmark structure, and extracted 

the DF as a function of the first three auto-regressive components. In addition to the existence of 

damage, they also introduced localization indices to identify the location of the damage. Lynch 

(2005) used experimental data of the ASCE benchmark structure excited by a shaker to estimate 

transfer function poles using traditional system identification methods. By comparing the location 

of poles for an unknown state to those of the baseline state, the damage can be accurately 

identified. However, excitation data, which is very difficult to obtain in realistic structures, is used 

in this approach. Despite these successful attempts, some challenges are still not addressed. Thus, 

our new approach aims to detect, locate, and quantify the damage caused by mass and stiffness 

changes separately using output data only. 

As the second case study, the proposed approach is tested under simulated data in phase I of the 

IASC-ASCE benchmark problem using the 120 DOF finite element model. For this model, the 

excitations are modeled as independent filtered Gaussian white noises, and are applied one per 

floor at the center of each floor as approximating wind or other ambient excitations. The 

excitations can be added either in strong (x) direction or weak (y) direction. Considering that the 

properties of this shear-type structure in one direction are mainly related to the vibrations in the 
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corresponding direction, two directions of excitation are applied separately in order to detect the 

damage in different directions. There are four accelerometers on each floor, two of which are to 

monitor the accelerations in the x direction, and the other two of which are for the y direction 

(Figure 3). To simulate the errors caused by the measurement or environment, 10% noise is 

imposed to all the acceleration signals in the sensors. Figure 4 demonstrates the acceleration 

signals of the baseline structure acquired by the sensors located as ax1 in Figure 3. In order to 

obtain the translational acceleration of the floor and reduce the effect of noise, the average is taken 

of the two sensors in the same direction.  

 

Figure 3. Placements and directions of sensors and excitations 
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Figure 4. Acceleration data for each floor with 10% artificial noise 

There are six damage patterns defined in the benchmark problem to simulate major damage, 

minor damage, asymmetrical damage, etc. (Johnson et al 2004). These damage patterns are 

introduced by removing different braces, and mainly manifest as stiffness reduction. In addition, 

two damage patterns simulating the mass reduction, referred to as Damage Patterns M1 and M2, 

are also demonstrated in this paper. The eight damage patterns included in this paper are outlined 

below: 

• Damage Pattern 1 (DP1): Removal of all braces on the first floor; 

• Damage Pattern 2 (DP2): Removal of all braces on the first and third floors; 
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• Damage Pattern 3 (DP3): Removal of one brace on the first floor; 

• Damage Pattern 4 (DP4): Removal of one brace on one side of the first and third floors; 

• Damage Pattern 5 (DP5): Damage Pattern 4 + unscrewing of the left end of the north floor 

beam at the first floor on the west face of the structure; 

• Damage Pattern 6 (DP6): Reduction of the stiffness of a brace to two-thirds of its original 

value; 

• Damage Pattern M1 (DPM1): Reduction of mass on the fourth floor; and 

• Damage Pattern M2 (DPM2): Damage Pattern M1 + Damage Pattern 1. 

Note that the last two damage patterns were not included in the original benchmark damage 

cases; rather, they were created for this study to demonstrate the capability of the method for 

detection of changes in mass. 

4.1 Damage Pattern 1: All braces of the first floor are broken 

The first damage pattern shows a stiffness reduction of the first floor due to the removal of all 

the braces on the first floor. As described above, the vibration in the x direction can be used to detect 

the change of properties in the x direction (strong direction), and the vibration in the y direction is for 

damage detection in the y direction (weak direction). The DFs calculated using the proposed method 

are shown in Table 7 for the x and y directions, respectively. As has already been discussed in 

section 3 of this paper, each row in these tables represents a sensor cluster. For the x direction, all 

valid DFs except DF11,x, which has a value of -25.64%, are very close to zero. This shows that the 

damage is only related to the change of properties on the first floor. Considering that the original 
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stiffness for the first floor in the x direction is 2.1320 ×108 N/m, and that the damaged stiffness is 

1.6497 ×108 N/m (Johnson et al. 2004), the reduction of stiffness caused by the elimination of the 

braces is -(2.1320-1.6497)/2.1320 = -22.60%, which is very close to the DF (-25.64%) shown in the 

table. This verifies that this approach is able to measure the severity of the damage quite accurately. 

Similarly, the DFs for the y direction demonstrate again that the damage occurred on the first floor. 

The DF11,y for the y direction is -36.34%, which is close to the stiffness reduction in the y direction 

due to the removal of braces (-(1.3581-0.8758)/1.3581 = -35.51%), indicating that the braces have 

more contribution to stiffness in the y direction than in the x direction. 

Table 7. Damage features (%) for DP1 in the IASC-ASCE benchmark problem 

Reference Channel 1st  2nd  3rd  4th  

x 

direction 

1st  -25.64 -1.29 N/A N/A 

2nd  0.22 -0.72 0.68 N/A 

3rd  N/A -1.13 -1.13 -1.34 

4th  N/A N/A -1.11 0.01 

y 

direction 

1st  -36.34 0.47 N/A N/A 

2nd  1.61 0.03 0.02 N/A 

3rd  N/A 0.56 0.36 0.25 

4th  N/A N/A -0.50 0.91 
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4.2 Damage Pattern 2: All braces of first and third floor are broken 

Damage pattern 2 involves the removal of the braces on the first and third floors. It is thus 

expected that the damage features related to the first and third floors will be non-zero values. It is 

observed from Table 8 that the DF11,x for the first row and first column is -24.89%, which is almost 

the same as the corresponding value in Table 7, indicating that the damage for the first floor can still 

be located and quantified. It can also be seen that for x direction the four DFs between the second 

and third sensors reflect how the removal of the braces on the third floor influences the stiffness. The 

magnitudes, meanwhile, imply that the removal of the braces results in reductions of 26.35% and 

29.19% in total stiffness of the second and third floors, respectively.  

Table 8. Damage features (%) for DP2 in the IASC-ASCE benchmark problem 

Reference Channel 1st  2nd  3rd  4th  

x 

direction 

1st  -24.89 3.97 N/A N/A 

2nd  -0.10 -26.35 -50.05 N/A 

3rd  N/A -51.74 -29.19 -3.53 

4th  N/A N/A 1.93 0.36 

y 

direction 

1st  -36.26 0.09 N/A N/A 

2nd  0.74 -36.86 -72.61 N/A 

3rd  N/A -73.30 -39.46 -3.85 

4th  N/A N/A -0.40 0.27 

This damage also creates an approximately 50% reduction in the stiffness between the second 

and third floors. For the y direction, the patterns of DFs are similar, but the absolute values are larger, 

which means that the braces make more contribution to the stiffness in the y direction. It should also 
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be mentioned that other DFs are not exactly zero, mostly due to the 10% noise added to the data. 

However, since these values are significantly smaller than the other DFs where the damage is 

observed, the damage is not hidden by the false-positive results. For real implementation, different 

statistical analyses can be conducted to define a threshold value in order to minimize such false 

positives and negatives (Gül and Catbas 2009). 

4.3 Damage Pattern 3: One brace of first floor is broken 

Damage pattern 3 is minor compared to damage patterns 1 and 2. In damage pattern 3, only one 

brace of the first floor in the y direction is removed, which would lead to a smaller stiffness 

reduction in the structure. In Table 9, it is observed that all the DFs for the x direction are very close 

to zero. This is to be expected since the removed brace would have only provided stiffness in the y 

direction, such that its removal will not influence the stiffness in the x direction. For the y direction, 

it can be seen that the patterns of DFs are similar to corresponding ones in Table 7, since the removal 

of the brace only influences the stiffness for the first floor. The DF11,y is -10.52% which is around 

1/4 of the corresponding DF in Table 7. Given that there are four braces in each direction on each 

floor, it is reasonable that removal of one brace should lead to 1/4 stiffness reduction compared to 

the case where all of the braces were removed. 
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Table 9. Damage features (%) for DP3 in the IASC-ASCE benchmark problem 

Reference Channel 1st  2nd  3rd  4th  

x 

direction 

1st  0.73 0.02 N/A N/A 

2nd  -1.07 1.02 1.17 N/A 

3rd  N/A 1.18 0.22 -0.69 

4th  N/A N/A 1.99 2.41 

y 

direction 

1st  -10.52 -0.29 N/A N/A 

2nd  0.73 0.37 0.97 N/A 

3rd  N/A 0.35 -0.10 -0.20 

4th  N/A N/A -0.29 -0.43 

4.4 Damage Pattern 4: One brace for each of the first floor and third floor is broken 

Damage pattern 4 involves only minor damage compared to damage pattern 2. Only one brace is 

broken on each of the first (in y direction) and third floors (in x direction), which introduces an 

asymmetrical and torsional behavior into the structure. It can be seen in Table 10 that the DFs for the x 

direction related to the second and third floors have large magnitudes, whereas the corresponding DFs 

for the y direction are very close to zero. The reason for this important finding is that the removal of the 

brace on the third floor is only in the x direction, so it will not affect the DFs in the y direction. Also 

note that the DFs in the x direction for the second and third floors are around 1/4 of those in Table 8, 

for the same reason described with respect to damage pattern 3. Furthermore, for the y direction it 

shows the same DFs as those in Table 9. It is therefore observed that the proposed approach can locate 

and quantify damage in different directions separately, even if the structure is asymmetrical. 
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Table 10. Damage features (%) for DP4 in the IASC-ASCE benchmark problem 

Reference Channel 1st  2nd  3rd  4th  

x 

direction 

1st  -0.03  2.04  N/A  N/A  

2nd  2.32  -8.06  -15.71  N/A  

3rd  N/A  -15.59  -7.57  1.69  

4th  N/A  N/A  -0.91  -1.69  

y 

direction 

1st  -10.28 0.32 N/A N/A 

2nd  1.64 0.59 -0.12 N/A 

3rd  N/A -0.35 -0.10 -0.20 

4th  N/A N/A 0.29 0.43 

4.5 Damage Pattern 5: Damage Pattern 4 + unscrewing of the left end of the north floor beam 
at the first floor on the west face of the structure 

Damage pattern 5 is very close to damage pattern 4. In addition to the brace removals in damage 

pattern 4, only one beam is unscrewed on the first floor. From Table 11 it can be observed that the DFs 

are almost the same as those in Table 10, which indicates that the damage pattern 4 is detected and the 

damage introduced by the unscrewing of the beam is hidden. According to Johnson et al. (2004), it is 

observed that the difference between the stiffness matrices for damage patterns 4 and 5 is quite small. 

We thus conclude that the reason the unscrewing of the beam cannot be detected is that the damage is 

not noticeably reflected in the change in stiffness of the finite element model. 
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Table 11. Damage features (%) for DP5 in the IASC-ASCE benchmark problem 

Reference Channel 1st  2nd  3rd  4th  

x 

direction 

1st  -0.26  1.18  N/A N/A  

2nd  0.32  -6.92 -13.44 N/A  

3rd  N/A  -14.41 -8.49 -0.77 

4th  N/A  N/A  -0.47  0.16  

y 

direction 

1st  -10.20  -0.24  N/A  N/A  

2nd  1.18  -0.53  -0.77  N/A  

3rd  N/A  0.67  0.42  0.61  

4th  N/A  N/A  0.46 0.43  

4.6 Damage Pattern 6: Area of one brace on one side of the first storey is reduced to 2/3 

Damage pattern 6 is very close to damage pattern 1, which involves stiffness reduction for the first 

floor. However, damage pattern 6 is even smaller than pattern 1, since no braces are removed but 

instead the stiffness of one brace on the first floor is reduced to 2/3 of its original value. Similarly, it can 

be seen in Table 12 that the DFs for the x direction are very small, which means that the damage is not 

in the x direction. However, it is also noted that DF12,x and DF21,x are both greater than 2% (because of 

the 10% artificial noise added to the data), which may cause them to be confused with the minor real 

damage applied in the y direction. For the y direction, a -4.01% reduction in DF11,y is identified, which 

demonstrates the slight stiffness reduction on the first floor. The magnitude of -4.01% here is 

approximately 1/3 of the -10.52% magnitude in Table 9, which exactly reflects the severity of the 

damage (1/3 stiffness reduction in the brace). Note that all of the other DFs in this table are close to 

zero. 
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Table 12. Damage features (%) for DP6 in the IASC-ASCE benchmark problem 

Reference Channel 1st  2nd  3rd  4th  

x 

direction 

1st  0.81 2.04 N/A N/A 

2nd  2.84 0.62 0.22 N/A 

3rd  N/A 0.16 0.76 1.28 

4th  N/A N/A 1.35 0.74 

y 

direction 

1st  -4.01 -0.63 N/A N/A 

2nd  0.92 0.02 0.06 N/A 

3rd  N/A -0.49 0.34 0.60 

4th  N/A N/A -0.10 0.18 

4.7 Damage Pattern M1: Mass of fourth floor is reduced by 20% 

From the results for damage patterns 1-6, it is demonstrated that the change of stiffness can be 

very accurately detected, located, and quantified using the proposed approach. In this section, a 

reduction of 20% to the mass on the fourth floor is introduced to test the capability of the 

methodology for identification of mass changes. It can be seen in Table 13 that the DFs for the 

fourth sensor cluster for both x and y directions are very large (around 25%) while the other values 

are very close to zero. As before, the magnitude of 25% in the DFs for 20% reduction in the mass 

can be deduced from Eq. 10, where the mass term is in the denominator. It should be noted that the 

DFs for the change of mass are asymmetrical, just as shown for the mass spring system, and same 

in both x and y directions, which can be considered as the main differences between change of mass 

and change of stiffness. 
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Table 13. Damage features (%) for DPM1 in the IASC-ASCE benchmark problem 

Reference Channel 1st  2nd  3rd  4th  

x 

direction 

1st  -0.15  1.46  N/A  N/A  

2nd  1.82  -0.18  -0.49  N/A  

3rd  N/A  -0.62  -0.15  0.40  

4th  N/A  N/A  24.84  24.48  

y 

direction 

1st  -0.78  0.26  N/A  N/A  

2nd  0.08  -0.78  -1.28  N/A  

3rd  N/A  -0.65  -0.66  -0.71  

4th  N/A  N/A  25.34  25.05  

4.8 Damage Pattern M2: Damage Pattern 1 + Damage Pattern M1 

From previous sections, the capability of this approach to identify and quantify change of mass and 

change of stiffness, respectively, has been verified. Now damage consisting of changes of both mass 

and stiffness is introduced by combining damage pattern 1 and damage pattern M1. The DFs for this 

damage pattern are demonstrated in Table 14. The DF11,x and DF11,y related to the first floor are close 

to the corresponding DFs in Table 7, indicating that a change of stiffness is detected. Similarly, The 

DF43,x, DF44,x, DF43,y and DF44,y, which demonstrate the change of mass, are the same as those in 

Table 13. It is noted that a change of mass and stiffness can be distinguished by the characteristic that 

the DFs for mass change are not symmetrical, i.e., that change affects only rows in the table. It is 

therefore concluded that the proposed approach is able to accurately identify, locate, and quantify 

damage, and to distinguish change of mass and change of stiffness separately, even when they occur 

simultaneously. Having said this, it is acknowledged that noticing these symmetrical and 
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asymmetrical changes in real-life data may not be as easy but these findings are still very valuable for 

separating the stiffness and mass changes using output-only data in SHM applications. 

Table 14. Damage features (%) for DPM2 in the IASC-ASCE benchmark problem 

Reference Channel 1st  2nd  3rd  4th  

x 

direction 

1st  -24.03 2.56 N/A N/A 

2nd  2.54 0.11 0.72 N/A 

3rd  N/A -0.73 -0.21 0.26 

4th  N/A N/A 24.78 25.31 

y 

direction 

1st  -36.03 0.39 N/A N/A 

2nd  -0.53 -1.38 1.05 N/A 

3rd  N/A 0.18 0.04 -1.23 

4th  N/A N/A 24.56 25.58 

5 Conclusions 

In this study, a novel approach based on time series modeling has been presented for damage 

detection. In this approach, ARMAX models adopting output-only data have been created for 

different sensor clusters. In this way, an anomaly can be identified by considering the damage 

features extracted from the difference between coefficients of ARMAX models for baseline and 

damaged structures. The approach has been applied to a 4-DOF mass spring system and then to 

phase I of the shear type IASC-ASCE benchmark problem. The results show that change of 

stiffness and change of mass can be detected and located separately. In addition, the magnitude of 

the change can be accurately reflected by the DF values. This constitutes the first approach of its 
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kind which can distinguish between change of stiffness and change of mass in order to accurately 

measure the severity of an anomaly. On a theoretical level, this approach achieves level 3 damage 

detection as defined by Rytter (1993). As a potential direction for future study, the authors 

acknowledge that experimental research should be carried out to test the suitability of this 

theoretical approach for real-life structures. 
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