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Abstract: This paper presents a novel framework for transportation infrastructure monitoring using sensors 8 

in crowdsourced moving vehicles. Vehicles equipped with various kinds of sensors have the potential to be 9 

the perfect tools for assessing the overall health condition of transportation infrastructure at the city level. 10 

Three applications of crowdsensing-based techniques are introduced in this paper to evaluate the 11 

framework. First, a methodology using the vibration data collected from a large number of smartphones in 12 

moving vehicles for bridge damage detection is presented. Lab experiments are conducted to verify the 13 

method. Second, a lab experiment investigating the feasibility of gyroscope in smartphones for road 14 

deformation measurement is described. Third, a sport camera is used to assess road surface condition. 15 

These three applications demonstrate the potential of crowdsensing-based techniques to accomplish low-16 

cost and efficient transportation infrastructure monitoring. 17 

Keywords: Crowdsensing; Transportation Infrastructure Monitoring; Moving Vehicles 18 

1. Introduction 19 

Improving the efficiency and sustainability of transportation infrastructure systems is a major 20 

undertaking in the future development of smart cities [1-3]. In this context, advanced sensing and data 21 

analytics offer unique capabilities for improving various components of transportation infrastructure systems. 22 

Currently, transportation infrastructure systems in developed countries, as key components of smart cities, 23 

are mostly outdated and are vulnerable to various risks [4,5]. As these transportation infrastructure systems 24 

age, there is an increasing demand for cost effective and efficient tools to monitor and manage the systems 25 

due to the limited budget of municipal jurisdictions. 26 

Currently, there are two common methods used to monitor existing transportation infrastructure systems. 27 

The first method involves pre-installing sensors on the infrastructure to continuously collect and analyze data. 28 

The second method involves occasionally dispatching engineers or technicians to the site to record the 29 

measurements and bring them back for analysis. In spite of the rapid development of these monitoring 30 

techniques, there are still challenges in terms of scalability, i.e., applying these techniques to all of the existing 31 

transportation infrastructure systems. For the first method described above, a large number of sensors must 32 

be pre-installed on the infrastructure components. The cost for sensors and the cost of the labor to install them 33 

are high, and providing stable power supply systems for this type of health monitoring system remains an 34 

unresolved problem. For the second method, the inspection intervals are usually long due to the high costs of 35 

labor and inspection equipment. 36 



To overcome the abovementioned issues, researchers have proposed using vehicles that are equipped 37 

with various kinds of sensors to monitor the transportation infrastructure systems with the involvement of 38 

citizens to increase efficiency and reduce the cost to municipal departments [6,7]. Owing to the high mobility 39 

of vehicles, they can efficiently monitor the health condition of a population of the existing infrastructure. 40 

Figure 1 includes a list of widely used sensors in vehicles. The monitoring strategy that uses crowdsourced 41 

sensors in vehicles is presented in Figure 2. The sensors in vehicles can collect data while the vehicle is 42 

traveling along a road or over a bridge. Then, the data are transmitted to remote servers for further processing 43 

and decision making. In employing this strategy, there is no need to install sensors locally, and monitoring 44 

the condition of the infrastructure can be accomplished efficiently with the involvement of a large number of 45 

vehicles. 46 

 47 

Figure 1 – Sensors that can be installed in vehicles (modified from [8]) 48 

 49 

 50 

Figure 2 – Overview of the transportation infrastructure monitoring strategy employing crowdsensing-based 51 

techniques 52 

It should be acknowledged that previous studies propose to use instrumented vehicles for transportation 53 

infrastructure [9,10]. However, these instrumented vehicles are usually specially designed and are equipped 54 



with expensive sensors, which means they cannot be used in a scalable manner due to the high cost [11]. This 55 

paper focuses on the utilization of commercial grade or naturally installed sensors in normal vehicles in order 56 

to gather data from a large number of vehicles for analysis. This type of monitoring technology offers several 57 

advantages: first, it can significantly reduce the cost for monitoring due to the voluntarily involvement of 58 

citizens; second, it has the potential to monitor a population of transportation infrastructure in real time; third, 59 

owing to big data, the technology is more robust to operational effects; fourth, the technology can be fully 60 

automated after the system is established. 61 

This paper will present three applications under the framework of crowdsensing-based transportation 62 

infrastructure monitoring using smartphones and sport cameras with which vehicles may be easily equipped. 63 

2. Application 1: Bridge Health Monitoring using Smartphones in Vehicles 64 

Moving sensors for bridge health monitoring have been investigated extensively in last decades [12-18]. 65 

Yang et al. [14] were the first to conduct a study to extract the frequencies of a bridge from a moving vehicle. 66 

In their paper, the authors found an analytical solution showing that the data collected from a moving vehicle 67 

includes the dynamic properties of the bridge. Afterwards, numerical analysis and experiments were 68 

conducted by various researchers to show the feasibility of extracting dynamic properties such as frequencies, 69 

mode shape, or damping [13,18-21]. The major challenge in this research field is to separate the bridge 70 

properties from signals that mix bridge and vehicle vibrations. The mixed signals could also be affected by a 71 

number of factors such as road roughness and environmental effects.  72 

Most of the previous studies focused on extracting the dynamic characteristics of the bridge using a 73 

single vehicle, which is sensitive to environmental and operational effects. In this paper, a new data-driven 74 

method for bridge damage detection based on a large number of vehicles is introduced. This method has the 75 

potential to be implemented on cars belonging to commuters, on police cars, on emergency vehicles, or on 76 

maintenance vehicles and buses to reduce costs associated with infrastructure monitoring. 77 

The overall method, shown in Figure 3, includes two phases; the training phase is the baseline case and 78 

the testing phase corresponds to the unknown state of the bridge. For each phase, acceleration data can be 79 

collected from a number of vehicles (m1 vehicles for training phase and m2 vehicles for testing phase). 80 

Features can be extracted from training and testing phases. The distribution of the features will then be 81 

compared to determine the existence of damage. The logic behind this method is that a large number of 82 

vehicles could mitigate the operational effects such as weight, suspension system, the speed of the vehicles, 83 

and the influence of other vehicles. Any large shift in terms of features should be observed only if the status 84 

of the bridge changes. In the research described in this paper, a Mel-frequency cepstral analysis is conducted 85 

for feature extraction, and Kullback–Leibler divergence is used for the comparison of feature distribution. 86 

Details of the method can be found in a previous study by the authors of the present work [6,22]. 87 



 88 

Figure 3 – A crowdsensing-based bridge damage detection method 89 

To verify the method described above, a lab experiment using smartphones in a robot car is conducted 90 

as presented in Figure 4. In the experiment, a robot car passes through the bridge deck multiple times. The 91 

robot car, as shown in Figure 5, is designed with the ability to change weight, spring constant, and speed to 92 

mimic the behavior of vehicles of different configurations. The weight of the top plate could vary between 93 

0.898, 0.988, 1.084, 1.170, and 1.270 kg; the spring constant could vary between 155, 288, 425, 615, and 726 94 

N/m; and the speed of the robot car could be either 0.25, 0.33, or 0.40 m/s. Furthermore, each test is repeated 95 

3 times to consider other effects such as road roughness. Two G-Link®-200 wireless accelerometers from 96 

Microstrain Inc. and a Galaxy S5 smartphone from Samsung Group are mounted on the top plate of the robot 97 

car. The sampling frequencies of the accelerometers and the smartphone are 128 Hz and 100 Hz, respectively. 98 

An Android app was developed specifically for this purpose and installed on the smartphone to collect 99 

vibration data. Details of the Android app can be found in a previous study by the authors of the present work 100 

[6].  101 

In total, three damage cases (DCs) are applied to the bridge: 1) 15% section area reduction at the mid-102 

span (see Figure 6); 2) 15% section area reduction at the ¼ span (see Figure 6); and 3) boundary condition 103 

changes at both ends, as shown in Figure 7(a) and (b). For each damage case, a total of 5×5×3×3=225 tests 104 

are completed considering the combination of all the possible robot car configurations and the repetition of 105 

three times. In the analysis, 30 trials are conducted. In each trial, 50% of the 225 tests for each case are 106 

randomly selected to simulate the randomness of the vehicle configurations. 107 



 108 

Figure 4 – Lab experiment setup 109 

 110 

Figure 5 - Robot Car Configuration 111 

  112 

Figure 6 – Local damage created by section area reduction 113 



  

(a) Roller support (b) Fixed support 

Figure 7 – Global damage created by boundary condition changes 114 

As shown in Eq. (1), damage feature is defined as a function of the Kullback–Leibler divergence. 115 

base baseF( , )=ln( ( , ) ) 1line unknown KL line unknownD F F D F F e   (1) 

where base( , )KL line unknownD F F  is the Kullback–Leibler divergence between the features of baseline and 116 

unknown cases, and e is the Euler's number. Assuming the features are Gaussian distributed, the Kullback–117 

Leibler divergence can be calculated according to Eq. 2. 118 
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where μbaseline and μunknown are the average values of the features, Σbaseline and Σunknown are the covariance 119 

matrices for baseline and unknown cases, and k is the number of features used for this analysis. In this study, 120 

k is set as 30. The function trace() calculates the trace of a matrix. 121 

The damage features calculated using the data collected from the accelerometers and the smartphone are 122 

presented in Figure 8 and Figure 9. Each trial is related to a random sampling procedure of the vehicle 123 

configurations. As shown in the figures, the damage features are stable while different vehicles are used but 124 

the state of the bridge is unchanged. When the damage of the bridge is introduced (i.e., damage cases DC1, 125 

DC2, and DC3), the damage features become higher against the baseline case. This shows that the existence 126 

of damage is successfully identified. Comparing Figure 8 and Figure 9, we can see that the patterns of damage 127 

features from the accelerometers and the smartphone are very similar, which proves that the smartphone is 128 

suitable for this application even though it has lower resolution and sampling frequency. 129 



 130 

Figure 8 – Damage features for baseline and three damage cases from the sensors 131 

 132 

Figure 9 – Damage features for baseline and three damage cases from the smartphone 133 

3. Application 2: Road inclination measurement using smartphones in vehicles 134 

The gyroscope sensor can provide information regarding the orientation of the smartphone. In this 135 

section, a lab experiment investigating the feasibility of this sensor for road inclination measurement is 136 

introduced. As can be seen in Figure 10(a), 4 wooden decks are placed on the ground, and some small steel 137 

blocks are placed underneath these decks to create inclinations. The dimensions of the setup can be found in 138 

Figure 10(b). There are, in total, 4 zones in the setup, where zone 1 is flat, zone 2 is a decline with 1.37° 139 

inclination, zone 3 is an incline with 0.96° inclination, and zone 4 is a decline with 1.37° inclination. 140 

As shown in Figure 11(a) and (b), another version of the robot car similar to that used in the last section 141 

is used for this test. In this robot car, 4 rods instead of 2 rods are used for the stability of the top plate. The 142 

total weight of the top plate is 1.2 kg. One wireless accelerometer and one smartphone are placed on the top 143 

plate. It should be noted that data from the wireless accelerometer are not collected in this experiment. The 144 

Matlab app on the Android smartphone is used for this experiment. 145 



The experiment includes three trials. As shown in Figure 12, the measured orientations are compared 146 

with the theoretical values (red dashed lines) calculated from the dimensions. As shown in the figure, the 147 

gyroscope sensor in the smartphone provides useful information about the deformation of the road. Some 148 

measurement errors exist, which could occur because the gyroscope sensor in the smartphone did not go 149 

through the calibration process before the tests. Also, the measurement is not accurate when the inclination 150 

of the decks changes because the robot car could cross over two decks at such locations. In a real-life scenario, 151 

the orientation information of the smartphones in multiple moving vehicles can be synchronized with the 152 

GPS data to show the deformation of the roads at city level. Challenges such as human factors should be 153 

resolved in real-life applications. 154 

 155 

(a) Overview of the road deformation test setup 156 

 157 

(b) Dimensions of the setup 158 

Figure 10 - The deformed road setup and the dimensions (in mm) 159 

 160 

(a) Robot car for road deformation measurement 161 



 162 

(b) Test procedure 163 

Figure 11 – Road deformation measurement experiment 164 

 165 

Figure 12 – Comparison of test results and theoretical values 166 

4. Application 3: Road crack detection using sport cameras attached to vehicles 167 

In addition to smartphones, backup cameras are another type of widely installed sensors in vehicles. In 168 

this section, the feasibility of applying such cameras for transportation infrastructure monitoring is 169 

investigated. Since current vehicles typically do not allow easy access to the backup camera system due to 170 

safety reasons, a commercial grade sport camera, GoPro, is mounted at the rear of the vehicle to mimic the 171 

behavior of a backup camera (see Figure 13). A sport camera can continuously capture videos at a high shutter 172 

speed. 173 

In recent years, due to its ability to process massive data accurately and automatically, deep learning 174 

methods have attracted great attention of researchers in civil infrastructure monitoring [23]. They have been 175 

used to process vibration data [24-27] and image data [28-31] in different structures including bridges, 176 

buildings, railways and roads. For example, Rafiei and Adeli [24] designed a structural health index (SHI) 177 

based on synchrosqueezed wavelet transform, Fast Fourier Transform, and unsupervised deep Boltzmann 178 

machine. They used this index to assess the local and global condition of the structure. Dong et al. [32] 179 

proposed deep learning-based full field optical flow methods for structural displacement monitoring. 180 
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Particularly, deep learning-based methods have shown superior performance in the context of crack 181 

detection problems [33,29,34,35,28]. In this section, a novel deep learning algorithm is developed for road 182 

crack detection that considers the connectivity of pixels. The architecture of the deep neural network is 183 

presented in Figure 14. A batch size of 16 is used. Taking 256×256 color image patches extracted from GoPro 184 

as input, an encoder-decoder procedure is applied with multiple level feature fusion. The output of the deep 185 

neural network is a connectivity map, proposed in Mei et al. [36], representing the neighboring relationship 186 

of crack pixels. A depth-first search algorithm, as proposed in a previous study by the present authors [37], 187 

is applied to the output of the deep neural network to generate the binary mask for cracks. More details of the 188 

deep neural network can be found in the study authored by Mei et al. [36].  189 

The deep neural network is first trained on a general image datasets ImageNet [38] as pre-training. Then, 190 

the proposed method is trained and tested on a dataset called EdmCrack600 released by our research team 191 

[39]. The EdmCrack600 dataset includes 600 images extracted from videos taken during approximately 10 192 

hours of driving in Edmonton, Canada. All the images were annotated manually at pixel level by the authors. 193 

The dataset was collected during road tests and consists of the various objects one can encounter during 194 

driving, such as snow, shadows from trees, other vehicles, etc.   195 

In this study, the EdmCrack600 dataset is split into 420/60/120 images for training, validation, and 196 

testing purposes, respectively. After training for 20 epochs on EdmCrack600 dataset, the precision, recall, 197 

and F1 score, as defined in the work by Shi et al.[40], are calculated to measure the performance on the test 198 

set. The obtained precision, recall, and F1 score are 0.8469, 0.6994, and 0.7472, respectively. It took 251.09 s 199 

to process all 120 test images on a PC with Intel 8700k CPU, 32GB memory, and Nvidia Titan V GPU. 200 

Considering the memory limit of 11GB on GPU, the batch size of 16 is used, and overall implementation 201 

time includes the inference time from the deep neural network and the time for outputting the results The 202 

performance of this method on the EdmCrack600 dataset is comparable with the ones reported in a previous 203 

study by the present authors [41].   204 

 205 

Figure 13 – Mounting of GoPro Sport Camera 206 



 207 

Figure 14 – Deep neural network architecture 208 

Two sample images from the EdmCrack600 dataset and their corresponding identification results are 209 

shown in Figure 15. The images include many extraneous objects such as lane markers, shadows, and other 210 

vehicles which may affect the accuracy of crack detection. Comparing the ground truth and the identification 211 

results from our method, it can be seen that the cracks are correctly identified, and the influence of other 212 

objects is successfully excluded. 213 

Original 

Image 
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Our 
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Figure 15 – Sample identification results from the deep learning-based method 214 

With the high success rate of road crack detection using our method, further analysis can be conducted 215 

by synthesizing the camera data with GPS signals collected by the GoPro. To quantitatively reflect the road 216 

condition, a simple crack index (CI) is designed as shown in Eq. 3. 217 

1000crack

total

N
CI

N
   (3) 

where crackN  is the number of pixels that are identified as crack in an image and totalN  is the total number of 218 

pixels in the image, i.e., resolution. A higher CI represents a worse road condition in terms of cracks. 219 

Figure 16 is generated by calculating the CIs for a series of images taken at 0.5 s intervals over a time 220 

period of 410 s. The vehicle is driven such that it maintains the same speed as the surrounding traffic, and no 221 

extra effort is made to control the vehicle’s speed. It should be noted that the images used herein were not 222 

annotated and not included in EdmCrack600 dataset. In the figure, each dot represents an image. The images 223 

with a CI smaller than 2 are colored green, the images with a crack index between 2 and 5 are yellow, and 224 

the others with a crack index higher than 5 are indicated in red. As shown in Figure 16, the road condition is 225 

worse in some locations than others.  226 

Images at two locations, as labelled in Figure 16, and their corresponding results are presented in Figure 227 

17. The CIs for these two locations are 6.8 and 2.6, respectively. As illustrated in Figure 17, the cracks in the 228 

images are correctly identified, and the location 2 indeed has better road condition than location 1. 229 



 230 

Figure 16 – Crack index map calculated by synchronizing image and GPS data 231 

  

(a) Original image at location 1 (b) Identification result at location 1 

  

(c) Original image at location 2 (d) Identification result at location 2 

Figure 17 – Images and results from the two locations labelled in Figure 16 232 

 233 



5. Discussion 234 

Although some experiments in the present study show the potential for the framework of crowdsensing-235 

based transportation infrastructure monitoring , there are still many issues that need to be resolved before the 236 

framework can be applied to real-life monitoring. An important one is that the data collected from different 237 

vehicles using smartphones are influenced by vehicle and device properties. To investigate these effects, 238 

preliminary real-life data is collected from four bridges in Edmonton, i.e., Walterdale bridge, MacDonald 239 

bridge, Low Level bridge and High Level bridge. Two vehicles, one Honda Civic and one Honda Pilot, were 240 

used representing two vehicle types, sedan and SUV, respectively. In addition, in each vehicle two 241 

smartphones with sampling frequencies of 200 and 400 Hz are used, and two wireless accelerometers are 242 

used in the sedan as a benchmark to compare the performance of the smartphones. 243 

 244 

Figure 18 – Image of the High Level bridgeused for real-life study [42] 245 

To present the results of the aforementioned investigation of the real-life issues due to the effects of 246 

vehicle and device properties, the frequency content of the data recorded on all devices while passing over 247 



the High Level bridge (Figure 18) is illustrated in 248 

 249 

Figure 19. The top and bottom plots show the sensor and smartphone data, respectively. The two sensors are 250 

installed on sedan, while the first two smartphones, denoted by SP1 and SP2, are installed in the SUV, and the 251 

other two smartphones, denoted by SP3 and SP4, are installed in the sedan. In addition, the sampling frequency 252 

of SP1 and SP3 is 200 Hz, while that of SP2 and SP4 is 400 Hz. As seen in 253 

 254 

Figure 19, the frequency content of the sensors and the smartphones located in the sedan, i.e., SP3 and 255 

SP4, follow similar patterns in the lower frequencies which proves the efficient performance of the 256 

smartphone in capturing major contents in lower frequencies, which are the focus for indirect bridge 257 

monitoring. Furthermore, comparing the smartphones with the 200 Hz sampling rate, i.e., SP1 and SP3, to 258 

the smartphones with the 400 Hz sampling rate, i.e. SP2 and SP4, shows similar agreement in lower 259 

frequencies, which eliminates the need to use higher sampling rates. On the other hand, comparing the data 260 



from the SUV, i.e., SP1 and SP2, with the data from the sedan, i.e. SP3 and SP4, shows major differences, 261 

which indicates that the vehicle’s features are the most significant factor affecting the frequency content of 262 

the acceleration signal recorded for the vehicle, and without considering this effect, it is difficult to employ 263 

indirect methods to capture frequency content of the bridge. 264 

 265 

Figure 19 – Frequency content of recorded acceleration signals while passing over the High Level bridge 266 

To specifically study the effect of the vehicle, heat map plots of short time Fourier transform of each car 267 

while moving off-bridge and also while passing over the High Level bridge are illustrated in Figure 20. The 268 

off-bridge plots represent the condition in which the car is stopped, starts moving, and then stops, while the 269 

on-bridge plots are showing passing over the bridge with a constant speed. Comparing off-bridge and on-270 

bridge plots corroborates the fact that the data collected from a vehicle passing over the bridge is significantly 271 

affected by the car type and features. In fact, these real-life data analyses prove that there is no general indirect 272 

monitoring method expected for extracting dynamic features of the bridge without considering the effect of 273 

the vehicle. One of the solutions to this issue is to create a filter to suppress car-related frequency content and 274 

hence amplify bridge-related content. Such a filter would need to be designed uniquely for each vehicle and 275 

cannot be generally used for any vehicle. Related work can be found in [43]. Another solution, as presented 276 

in section 2, could be to increase the number of the test vehicles in order to average out the effect of vehicles.  277 



 278 

Figure 20 – Heat map of short time Fourier transform of recorded acceleration signals while moving off-bridge 279 

and while passing over the High Level bridge 280 

6. Challenges 281 

Except the issues described in previous sections, there are many other challenges that have to be resolved 282 

while building the crowdsensing based infrastructure monitoring system. One important challenge is the 283 

influence of the vehicles themselves and of human beings on the collected data. The moving and vibration of 284 

vehicles could corrupt the data like vibration data or images collected by the sensors. Also, devices in vehicles 285 

could be moved and disturbed by the drivers or passengers during the data collection. Studies regarding these 286 

effects should be taken. Advanced signal or image processing techniques would need to be applied to 287 

eliminate the effects of the vehicles on the data. 288 

Also, a trade-off must be made between the limited bandwidth available to transmit the raw data and the 289 

large amount of computational power required to process the data. The onboard implementation of 290 

computationally heavy algorithms, such as deep learning algorithms, to process the data is difficult, and the 291 

computational capacity of vehicles and mobile devices is not as strong as that of remote servers. However, 292 

the transmission of the raw data to remote servers for further analysis is limited by the bandwidth available.  293 



In addition, since the moving vehicles are continuously collecting data while driving, it is challenging 294 

to attract a large number of users and keep them engaged in contributing to the monitoring purpose. Also, 295 

privacy issues should be addressed while collecting the data from the users. Relevant laws and regulations 296 

would need to be made regarding the disclosure of this type of data.  297 

7. Conclusions 298 

This paper proposes a framework for transportation infrastructure monitoring using moving vehicles. 299 

The feasibility of this framework and some relevant applications under this framework are investigated. This 300 

paper shows that the transportation infrastructure monitoring system established using crowdsourced moving 301 

vehicles is an automated prescreening tool which has the potential to monitor a large number of structures 302 

with reduced costs and increased efficiency compared with traditional civil infrastructure monitoring 303 

technologies. 304 

 Under this framework, three applications of smartphones and cameras for bridge and road health 305 

monitoring are presented. It is shown that it is feasible to use commercial-grade sensors equipped by smart 306 

devices in moving vehicles for preliminary transportation infrastructure monitoring. Further inspection could 307 

be only conducted on the structures with critical conditions. Specifically, the following conclusions can be 308 

drawn from this paper: 309 

1) A methodology combining feature extraction and distribution comparison is proposed to take 310 
advantages of the vibration data from different vehicles at different times, which enables indirect 311 

bridge health monitoring from a large amount of data. Lab experiments are conducted to verify this 312 

method. 313 

2) The gyroscope that can report the orientation of the smartphone is studied in this paper. The values 314 
reported by the gyroscope are compared with the actual inclinations in wooden decks in the lab 315 

experiment. The results show that the gyroscope in the smartphone has the potential to identify the 316 

large deformation in roads. 317 

3) A deep learning algorithm combining connectivity maps and depth first search is proposed to 318 
identify cracks from moving vehicles. Testing on the EdmCrack600 dataset collected by our group, 319 

the proposed method can achieve the state-of-the-art performance. This algorithm enables efficient 320 

and cost-effective inspection of the road pavements. The image data are fused with GPS data in this 321 

study to provide the detailed information such as crack index of the pavement health condition in 322 

the neighborhood. 323 

In the future, in the context of smart city, other sensors in smart devices and fusion of sensors will be 324 

investigated to provide more valuable information about current civil infrastructure systems.   325 
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