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Abstract: Advances in smart infrastructure produces a natural demand of system identification 

techniques for structural health and performance monitoring that can be scaled to regions and large 

asset inventories. Conventional approaches require sensors to be installed, often in long-term 

deployments, on the monitored infrastructure systems, which is a costly undertaking when thousands 

of systems (e.g., bridges) need to be monitored. This paper presents a novel mode shape identification 

method for bridges that uses data collected from moving vehicles as input—a paradigm that can 

overcome limitations associated with conventional approaches. The method consists of two steps. 

First, the data collected from moving measurement points are mapped to virtual fixed points to 

generate a sparse matrix. Then, a “soft-imputing” technique is employed to fill the sparse matrix. 

Finally, a singular value decomposition is applied to extract the mode shapes of the bridge. 

Experiments with synthetic, yet realistic, data are conducted to verify the method. The sensitivity of 

the proposed approach to different factors, including the number of vehicles, car speed, road 

roughness, and measurement errors are also investigated. The results show that the proposed method 

is capable of identifying the mode shapes of the bridge accurately. 

Keywords: mobile sensing; moving vehicle; mode shape identification; matrix completion; soft-

imputing 
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Nomenclature 

Table 1 – List of symbols and notations in this paper 

Symbol Description 

m The number of moving measurement points (MMPs) 

n The number of virtual fixed points (VFPs) 

t Time step 

V Velocity of the MMPs 

xi(t) The location of the ith MMP relative to the left end of the bridge at time step t 

si The location of the ith VFP relative to the left end of the bridge  

y(x, t) The vertical displacement of the bridge at location x and time t 

ϕk(x) The kth mode shape at location x 

qk(t) The generalized coordinate for the kth mode 

Y(t) The displacement vector for all MMPs at time t 

Q(t) The generalized coordinate vector for all modes at time t 

Φ(t) The shape function at the locations of MMPs at time t 

L(t) The mapping function converting the displacement from MMPs to VFPs 

Φs The shape function at the locations of all VFPs 

D 
The matrix constructed from the displacement vectors and mapping functions 

with missing values 

Z The estimated matrix according to D 

Zold The estimated matrix according to D before an iteration 

Znew The estimated matrix according to D after an iteration 

λi The ith regularization coefficient 

Ω The set including the indices of all valid data 

n
  The nuclear norm of a matrix  

*
  The rank of a matrix 

( )ΩP D  
A new constructed matrix that keeps the values of all the valid data in 

matrix D and set all the missing data of D to zero.  

( )⊥

ΩP D  Complementary projection of ( )ΩP D where ( )+ ( )=⊥

Ω ΩP D P D D  



 

 

1. Introduction 

The term “Smart city” refers to a city where networked sensors and computational algorithms that 

make use of data from sensors are employed for improving the efficiency of infrastructure 

components, often towards goals involving resiliency and sustainability. 1-3 With massive growth in 

urban population, resiliency and sustainability of urban centers have become highly dependent with 

their transportation infrastructure. 4-7 Many studies show that any disruption in the performance of 

bridges, which are key components of developed transportation networks, could result in irreversible 

economic and social losses. 8-10 This vulnerability is, in fact, more acute in many developed countries, 

because a substantial portion of their bridge stock have reached their design life, and their 

serviceability relies on a regular monitoring and maintenance operations. For instance, Canadian 

Infrastructural Report Card 11 assessed about 26% of bridges in Canada to be in fair, poor, or very 

poor conditions, which are under the risk of further deterioration. The situation in the United States 

is very similar. 12 Naturally, bridge condition assessment methodologies have garnered increasing 

interest in recent years. 13-15 

First step of bridge condition assessment is data collection. Most conventional methods rely on 

fixed sensors to collect data from bridges (see, e.g., 16-22). The efficiency and performance of these 

methods have been examined and demonstrated in those studies. However, these methods require 

each bridge to be instrumented with fixed sensors, which is costly, time-consuming, and, at the present 

time, almost impractical to be applied to a large number of bridges. As such, new “mobile sensing” 

technologies have recently been considered for bridges that use data collected from instrumented 

traversing vehicles. 23 This technology eliminates the need to install fixed sensors on bridges, which 

brings forth the possibility to monitor a large number of bridges through the use of instrumented 

vehicles. 

The concept of capturing the information of the bridge using a sensor installed in a moving 

vehicle was first proposed by Yang et al. 24 The challenge of this concept lies in the fact that the data 

measured on the moving vehicle include coupled information from both the vehicle and the bridge. 

Different techniques have to be applied to the recorded mixed responses in order to extract the 

dynamic characteristics of the bridge. 25-29 In Yang et al. 24, the dynamic analysis of vehicle-bridge 

interaction was performed for an analytical bridge-vehicle system, consisting of a simple 2D beam 

representing the bridge, and a moving mass-spring system representing the vehicle. It was shown that 

the bridge frequency could be extracted from the vibration of the vehicle. Subsequently, a number of 

studies followed up on the notion of mobile sensing through analytical/numerical analyses 30-34, as 

well as laboratory-scale 28, 35-40, and real-life experiments 19, 41. 

One way to assess the condition of a bridge through mobile sensing is based on modal 

characteristics. In this class of methods, the data collected from moving vehicles are used to estimate 

the frequencies and mode shapes of the bridge, which then can be used for further assessment of the 

bridge condition. The accuracy of mode shape identification is key to properly assess the condition 

of the bridge. In this particular thread of work, Oshima et al. 42 proposed a method to detect support 

damages based on the mode shapes identified after mapping the moving sensor data to fixed sensors. 

In another study, Malekjafarian and O’Brien 43 presented an algorithm for bridge damage detection 



 

 

based on the mode shapes obtained using the Short Time Frequency Domain Decomposition (STFDD) 

method. Later on in OBrien and Malekjafarian 44, they improved their method using laser vibrometers 

and accelerometers to achieve high resolution mode shapes. Empirical Mode Decomposition 

(EMD)—a well-known modal identification method—was investigated in another study. 45 

Matarazzo et al. 27 introduced a method dubbed “structural identification using expectation 

maximization (STRIDE)” for mode shape identification from mobile sensors. Their method consisted 

of two steps, where the first (expectation) step was to update the missing observations due to mobile 

sensing, and the second (maximization) step was to update the parameters of the state-space 

representation of the system. Hilbert Transform was also shown to be an effective technique in 

identifying bridge mode shapes. 25, 46 Yang et al. 46 found that the instantaneous amplitude of the 

vehicle includes mode shape information, and developed a method based on Hilbert transform to 

reconstruct the mode shapes from measured responses of the moving vehicle. In that study, they 

identified the vehicle speed, random traffic and road roughness as important factors affecting the 

accuracy of their method. Malekjafarian and Obrien 25 related the energy calculated from Hilbert 

Huang Transform (HHT) to the mode shapes. Using the data collected from two adjacent axles of a 

vehicle and empirical mode decomposition, the first mode shape was reconstructed. One limitation 

of the aforementioned two studies was that engineering judgement had to be applied to determine the 

signs of the mode shapes. Eshkevari et al. 47-49 treated the mobile sensing data as a sparse matrix with missing 

values. In their work, alternating least-square (ALS) was used to complete the matrix. Then, system 

identification techniques such as principal component analysis (PCA) and structured optimization analysis 

(SOA) are used to identify modal properties. 

As identified in several prior studies 23, 25, 43, the challenges of mode shape identification using 

moving vehicles mainly include the following: (i) the accuracy of mode shape identification is 

adversely affected by the limited vehicle bridge interaction time, as indicated in Malekjafarian and 

Obrien; 25 (ii) Since the sensor usually stays in one location for a very short period, high accuracy in 

mode shape identification is only achievable by carefully accounting for vehicle-bridge interaction, 

and by using multiple mobile sensors. 27 

In recent years, matrix completion methods have gained much attention from researchers in 

structural health monitoring. One major advantage of matrix completion methods is that they are fully 

data-driven, which does not require prior knowledge about the bridges. They have been successfully 

applied to system identification of bridges using either fixed sensors 50 or mobile sensors 34, 48, 49. 

Yang and Nagarajaiah 50 investigated two methods to recover the randomly missing values in 

structural vibration responses. One was based on ℓ1-minimization, and the other was based on nuclear 

norm minimization. The effectiveness and efficiency of the methods were compared on the real-life 

data about the Canton Tower and a cable-stayed bridge. More detailed review about system 

identification of structures using matrix completion methods can be found in Nagarajaiah and Yang 
51. Eshkevari et al. 34, 48, 49 treated the mobile sensing data as a sparse matrix with missing values. In 

their work, alternating least-square (ALS) was used to complete the matrix. Then, system 

identification techniques such as principal component analysis (PCA) and structured optimization 

analysis (SOA) were used to identify modal properties. 

 



 

 

This paper proposes a new method for mode shape identification from moving vehicles by 

converting the problem into a matrix completion problem, and through a mapping process and 

implementing a “soft imputing” algorithm proposed by Mazumder et al.52 to iteratively fill/complete the 

matrix. There are several advantages of the proposed method with respect to previousmethods: (i) 

Since the method does not explicitly use frequency domain information for system identification, it 

can work at traffic speeds with limited vehicle-bridge-interaction time. (ii) Owing to the mapping step 

in the method, the method can achieve high accuracy with a limited number of sensors. (iii) Since the 

soft imputing algorithm is non-parametric, no information about the dynamic system is required. 

The remainder of this manuscript is organized as follows: First, the methodology proposed in 

this study is introduced in §2. Then, numerical analyses are conducted in §3 to verify the method. The 

characteristics of the proposed method are discussed in §4, and conclusions, limitations, and 

recommended future work are provided in §5. 

2. Methodology 

2.1. Assumptions 

In the present study, the sensors are assumed to be placed on the front and rear axles of the vehicle 

(see Figure 1) to mitigate the influence of the suspension system. The deformation of the wheels and 

tires are ignored for simplicity. In practice, the effect of the vehicle’s dynamic system can be removed, 

for example, by using its empirical transfer function. It is assumed that recorded data are accelerations, 

which are integrated twice to obtain the displacements, and serve as inputs to the matrix completion 

algorithm. The weight of the vehicles is assumed to be negligible compared to the weight of the bridge 

to ensure a linear time invariant system. The speeds of traversing vehicles are assumed to be the 

identical, and constant. It is noted that the speed assumptions are made for simplicity, and the method 

devised in the present study can be generalized in a straightforward manner. The list of symbols and 

notations used in this paper is provided in Table 1. 

 

Figure 1 – illustration of the sensor installation 

2.2. Mapping moving observations to fixed observations 

Two terms are defined first—namely, moving measurement point (MMP), and virtual fixed points 

(VFP). Each MMP represents a mobile sensor on the moving vehicle; and each VFP is a virtual sensor 

placed at a fixed location. There is no direct measurement at VFPs. As shown in Figure 2, in the 
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proposed method, the observations from MMPs are first mapped to the virtual fixed points VFPs 

using linear interpolation. 

 

Figure 2 – Mapping moving measurement points to fixed points 

 

Considering the modal superposition, the vertical displacement ( ( ), )iy x t t  of the ith MMP can be 

expressed as 

1

( ( ), ) ( ( )) ( )
dn

i k i k

k

y x t t x t q t
=

=  (1) 

where ( ( ))k ix t  is the value of kth mode shape at location ( )ix t , and ( )kq t  is the generalized 

coordinate for kth mode. The Eq. (1) can be written in a matrix form by applying to all MMPs, as seen 

in Eqs. (2) and (3) below. 
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( ) ( ) ( )t t t=Y Φ Q  (3) 

In the equation above, ( )tY  represents the displacement vector for all MMPs, ( )tQ  is the 

generalized coordinates for all modes at time t, and ( )tΦ  is the shape function at the location of 

MMPs at time t. It should be noted that ( )tΦ  is not the mode shape matrix of the bridge since it is 

dependent on the time. 

To obtain the mode shape, the shape function value at location x can be projected to n base 

functions through Eq. (4), where n is the number of VFPs. 
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The proposed ( )jl x  is given in Eq. (5). Unlike in 42, this study uses linear interpolation from 

adjacent fixed points instead of all the points because the interpolation using all VFPs has a very high 

order, which can result in a large error when being inversed. 
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Substituting the location of one VFP, ps , into Eq. (4) results in the following equation, 

1

1 1

( ) ( )= =
n

p p

k p jk j p pk pk

j p p

s s
s a l s a a

s s


−

= −

−
=

−
  (6) 

Therefore, Eq. (4) can be written as in Eq. (7) for the location of MMP i, 

1

( ( )) ( ) ( ( ))
n

l i k j j i

j

x t s l x t 
=

=  (7) 

Writing Eq. (7) in matrix form for all modes, the Eqs. (8) and (9) can be obtained as follows, 

1 1 2 1 1 1 1 2 1 1

1 2 2 2 2 1 2 2 2 2

11 2

( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ( ( ))( ( )) ( ( )) ( ( ))

d

d

d

n n

n n

m n m n mm m n m

x t x t x t l x t l x t l x t

x t x t x t l x t l x t l x t

l x t l x t l x tx t x t x t

  

  

  

  
  
  =  
  
   

1 1 2 1 1

1 2 2 2 2

1 2

( ) ( ) ( )

( ) ( ) ( )
                                                                   

( ) ( ) ( )

d

d

d

n

n

n n n n

s s s

s s s

s s s

  

  

  








 
 
 

  
 
  

 (8) 

( ) ( ) st t=Φ L Φ  (9) 

In Eq. (9), the right side is the multiplication of two matrices. The first one, ( )tL , is the mapping 

function converting the displacement from MMPs to VFPs, and the second one is the shape function 

at n VFPs. The second matrix will not change with time and is the mode shape of the bridge. 

Substituting Eq. (9) into Eq. (3) yields to the following relationship, 

( ) ( ) ( ) ( ) ( )st t t t t= =Y Φ Q L Φ Q  (10) 



 

 

Multiplying Eq. (10) by the inverse of ( )tL  produces  

-1( ) ( ) ( )st t t=L Y Φ Q  (11) 

It should be noted here that if m ≠ n, i.e. ( )tL  is not a square matrix, then the pseudoinverse 

should be evaluated instead of the inverse. -1( ) ( )t tL Y is a vector with n elements, and the following 

matrix D in Eq. (12) is defined with columns representing time steps, where K is the total number of 

time steps, and rows representing VFPs. 

 -1 -1 -1

1 1 2 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s

K K Kt t t t t t t t t = = D L Y L Y L Y Φ Q Q Q  (12) 

In practice, the displacement is difficult to measure. Therefore, in this study, the acceleration data 

is numerically integrated twice to obtain the displacement. 

2.3. Valid data points 

Even though the inverse of the mapping function matrix ( )tL  is applied to all MMPs and VFPs, we 

observe the errors between the converted displacements at VFPs and the ground truth are small only 

when there are at least two MMPs in the region formed by two VFPs adjacent to the given VFP. We 

define the mapping within this range as valid and consider the other elements as invalid or missing. 

An example with 4 MMPs is presented in Figure 3. At certain time t, there are two MMPs between 

VFPs, s2 and s3, so these two VFPs have valid data at time t. Since all other VFPs do not have at least 

two MMPs in their adjacent segments, data for these VFPs are invalid and are considered as missing. 

The reason behind requiring at least two MMPs is that the linear interpolation is used to represent the 

displacement at an MMP using two VFPs. At least two MMPs are required to fully determine the 

inverse function of the mapping. 

 

Figure 3 – Illustration of the valid and invalid data points 

Since the invalid data cannot be used for system identification, the matrix D will have many 

missing values. A typical matrix D is presented in Figure 4 for visualization purpose. Figure 4 

illustrates that as the time goes on and the MMPs move to the right, VFPs at the right side start to get 

valid data. 

    …         

        

       valid invalid invalid invalidvalid



 

 

 

Figure 4 – Visualization of a typical D matrix 

2.4. Matrix Completion using Soft Imputing 

System identification techniques cannot be directly applied to the matrix with missing values. 

To overcome this issue, a technique called soft imputing is applied to look for patterns in the data and 

fill the matrix using an expectation maximization framework. The reason we choose soft imputing 

algorithm for matrix completion is that there is no need to assume the rank of the estimated matrix. 

Also, the Singular Value Decomposition (SVD) within this algorithm can guarantee the orthogonality 

of the factorized matrices, which is a property of mode shapes. This algorithm has a time complexity 

of O(n) which is also efficient in implementation. 52, 53 

In this framework, the missing data are assumed and updated in an iterative process. Consider a 

matrix ( )ΩP D  with element defined as below, 

( , )    ( , )
( )( , )

0        ( , )

i j i j
i j

i j






= 


Ω

D
P D  (13) 

where   is the set including the indices of all valid data. This matrix keeps the values of all the 

valid data and set all the missing data to zero. Similarly, ( )⊥

ΩP D  is defined as complementary 

projection of ( )ΩP D  where ( )+ ( )=⊥

Ω ΩP D P D D . 

Assuming the estimated matrix is Z, all the elements in Z are valid. There are two objectives for 

the optimization algorithm to fill the matrix D. First, ( )ΩP Z as defined as elements in Z corresponding 

to the valid elements in D should be as close to ( )ΩP D  as possible. Second, the rank of the estimated 

matrix Z should be as low as possible. This is a regularization term based on the assumption that 

using fewer modes to represent the vibration is expected to be more accurate than using more modes. 

According to the descriptions above, the following objective function is defined, 

2

*

1
minimize    ( ) ( ) ( )

2
inZ

f = − + Ω ΩZ P D P Z Z  (14) 



 

 

 
Figure 5 – Soft imputing algorithm for matrix completion  

where 
n
  represents the nuclear norm of a matrix and 

*
  is the rank of the matrix. i  is the 

regularization coefficient, which plays an important role in the algorithm. This optimization problem 

can be solved iteratively, as presented in Figure 5. At the beginning, the old( )ΩP Z  is set to ( )ΩP D , 

and old( )⊥

ΩP Z   is initialized randomly. i  are chosen in a descending order, and 1  should be 

smaller than the maximum singular value of oldZ . As stated in Oshima et al. 52, for a given i , the 

solution newZ  for the above optimization problem is given by the following iterative process. 
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where U , Σ , V  are determined by Singular Value Decomposition (SVD) of a new matrix 

( ) ( )old

⊥+Ω ΩP D P Z , and specifically 1 2=diag( , , )rd d dΣ  consists of the signular values. The matrix 

i
Σ is the soft-thresholded matrix of Σ , in which the notation ( )+  means the larger of the given 

value and 0 for each element. Repeating the process of replacing the missing value with the current 

guess and updating through Eq. (15), the matrix can be imputed after converging. As shown in Figure 

5, the algorithm will generate a series of 
i

Z , and the optimal one determined by the objective 

function value, i.e. Eq. (14), as well as engineering judgement, can be used for further analysis. The 

optimal 
i

Z is termed as optZ . 

2.5. System Identification 

After obtaining the optimal estimated matrix Zopt, different system identification techniques can be 

applied to retrieve the mode shapes of the bridge. In this study, SVD is used as it reserves the 

orthogonality of mode shapes in the decomposition. The estimated matrix Zopt has the same dimension 

as the matrix D which is n×K. The SVD of Zopt can be expressed as, 

T

opt opt opt opt=Z U Σ V  (16) 

Comparing Eq. (16) with Eq. (11), it is inferred that optU  relates to the mode shapes of the bridge 

since they are both orthogonal. By normalizing the optU , the mode shape of the bridge will be extracted. 

3. Numerical Verification 

3.1. Numerical Setup 

To verify the proposed method, numerical analyses are conducted using ABAQUS on a simply 

supported bridge, as illustrated in Figure 6. The length of the bridge is 40 m. The rectangular cross 

section of the bridge has a width of 3 m and a height of 1.5 m. The bridge is made of concrete, which 

has a density of 2400 kg/m3
 and elastic modulus of 27.5 GPa. The first three frequencies of the bridge 

are 1.44 Hz, 5.76 Hz and 12.95 Hz. Two MMPs are placed on the bridge with a distance of 2.5 m to 

represent the wheels of a single vehicle. A constant speed of 40 km/h is assigned to all the MMPs, 

and the linear implicit dynamic analysis is conducted with contacts among MMPs and the bridge. 

Therefore, the analysis ends when the foremost MMP reaches the right end of the bridge. The 

sampling frequency of acceleration is 200 Hz. 



 

 

 

Figure 6 – Setup of the numerical analysis 

3.2. Results and Analysis 

Figure 7 presents the measured accelerations, integrated velocities, and integrated displacements for 

2 MMPs. As described in §2, acceleration is considered as the measurement from the analysis. In this 

study, trapezoidal numerical integrations are applied twice to obtain the displacements, which are the 

input to the mapping and matrix completion procedures. In Figure 7, it is seen that the integrated 

displacements are not stationary. They follow the pattern of the deflection of a simply supported 

bridge where the absolute displacement is the highest near mid-span, but they are in a vibration form 

due to the moving of the vehicle.  

 

Figure 7 - Measured acceleration and integrated velocity and displacement for 2 MMPs: (a) measured 

acceleration; (b) integrated velocity; (c) integrated displacement 

The integrated displacements are then mapped to 10 VFPs in order to construct displacements 

at those VFPs following the procedure described in section 2.2. As mentioned earlier, it is assumed 

that the mapping is only valid when there are more than two MMPs in a VFP’s adjacent segments, as 

demonstrated in Figure 3. The invalid data in the matrix D are considered as missing data. Then, the 

matrix completion algorithm described in section 2.4 is applied to fill these missing values. The 

maximum singular value of the initialized Z is 0.02. A series of 11 λ values are given in descending 

order to the algorithm. λ values chosen are 1×10-2, 5×10-3, 1×10-3, 5×10-4, 1×10-4 5×10-5, 1×10-5, 

5×10-6, 1×10-6, 5×10-7 and 1×10-7, respectively. The threshold Ɛ is set to 1×10-15, and the maximum 

number of iterations for each λ is 105. The optimal λ is determined by measuring the error between 
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valid elements within estimated matrix Z and matrix D and using engineering judgement. The optimal 

λ will be used to generate final output for further analysis.  

Figure 8 compares the estimated Z matrix obtained by completing matrix D with ground truth 

displacements extracted at VFPs. Four out of ten VFPs are chosen for better visualization. In Figure 

8 (a), the solid portions of the curves are measured valid displacements mapped from the MMPs, and 

the dotted portions of the curves are estimated from the proposed algorithms. Figure 9 shows the 

errors relative to the amplitude of that specific VFP (minimum absolute displacement). It should be 

noted that even the measured data (solid portions of the curves) are not exactly equal to the ground 

truth, shown in Figure 8 (b), due to the mapping process. This phenomenon could be explained by 

Figure 10. The valid points are defined when there are more than 2 MMPs in a VFP’s adjacent 

segments. When only 2 MMPs are used, there is a chance that 2 MMPs cross the valid points, i.e. si 

in Figure 10. In this case, taking the pseudoinverse is equivalent to calculating values at three VFPs, 

i.e. si-1, si, and si+1, from two MMPs even though only data from one VFP, i.e. si, is considered as 

valid. This problem is underdetermined, and the mapping could cause errors. In following sections, 

it will be shown that when more MMPs are used, these errors can be reduced. 

 

Figure 8 - Comparison between reconstructed displacements for 4 VFPs and ground truth (2 MMPs) 

 

Figure 9 – Errors relative to the amplitude of each VFP (2 MMPs) 

 

Figure 10 - Mapping from 2 MMPs 

  

          

  



 

 

Following the mapping process, the matrix completion algorithm is implemented to find the 

internal relationship of displacements at different VFPs and to use this relationship to complete the 

matrix D. The matrix completion process is non-parametric which means no physical model is 

required for the process. The matrix D has a dimension of 10×677 with 4496 missing values. The 

missing rate for matrix D is 66.41%. It should be noted that the matrix D is constructed by mapping 

from 2 MMPs (2×677). 

After obtaining the matrix Z, i.e. completed from of matrix D, SVD is applied to extract the 

mode shapes of the bridge. The identified mode shapes are summarized in Figure 11. In order to 

quantitatively measure the similarity between the identified and the exact mode shapes, the Modal 

Assurance Criterion (MAC) is calculated using Eq. (17), 

( )
( ) ( )

2

identified exact

identified exact

identified identified exact

MAC( , )

T

T T

exact

 
 

   
=  (17) 

where identified  and exact  are the vectors representing the identified and the exact mode shapes. The 

MAC values for these modes are 1.000, 0.998 and 0.977. It is seen that the system identification is 

very accurate even though the mapping is not exact. 

  

Figure 11 - The first three normalized mode shapes identified using 2 MMPs 

4. Discussion 

4.1. Influence of the number of MMPs 

As described before, in this study, two MMPs represent a car, and the number of cars is expected to 

have effect on the mode shape identification. In this section, the effect of the number of MMPs on 

the identification results is investigated. Figure 12 presents the displacement values integrated from 

acceleration data for 4, 6 and 8 MMPs. As seen, the displacements for different numbers of MMPs 

have similar patterns, but the maximum displacement is larger when more MMPs are on the bridge. 



 

 

 

Figure 12 - Integrated displacement for 4, 6 and 8 MMPs 

Similar to Figure 8 in the previous section, Figure 13, Figure 14, and Figure 15 show 

comparisons between the matrix Z after completing matrix D and ground truth displacements at VFPs 

for different number of MMPs. We can see in Figure 13(a), Figure 14(a), and Figure 15(a), the 

measured displacements are closer to the ground truth than the ones for 2 MMPs. Comparing (a) and 

(b) plots in Figure 13, Figure 14, and Figure 15, the proposed algorithm works very well to estimate 

the missing values in matrix D. For the three cases discussed in this section, the dimensions of 

matrices D are 10×587, 10×497, and 10×407 with 2166, 1472, and 911 missing values, respectively. 

The corresponding missing rates for these three cases are 55.40%, 44.47%, and 33.61%. Figure 16 

presents the errors of the matrix completion relative to the amplitude of the displacement at each VFP. 

We can see the error level is around 20%, and more MMPs lead to lower errors. 

 

Figure 13 - Comparison between reconstructed displacements for 4 VFPs and ground truth (4 MMPs) 

 

Figure 14 - Comparison between reconstructed displacements for 4 VFPs and ground truth (6 MMPs) 



 

 

 

Figure 15 - Comparison between reconstructed displacements for 4 VFPs and ground truth (8 MMPs) 

   

(a) 4 MMPs (b) 6 MMPs (c) 8 MMPs 

Figure 16 - Errors relative to the amplitude of each VFP 

The first three mode shapes identified in these three cases are presented in Figure 17, and the 

MAC values for these modes are summarized in Table 2. Generally, all the modes are identified with 

a high accuracy in these three cases. The MAC values for second and thirds modes are all a little 

lower than the ones obtained by 2 MMPs, but the influence is not very significant. The possible reason 

for this phenomenon is that the mapping matrix Ns for 2 MMPs has lower dimensions and is more 

robust to the instability of pseudoinverse. The MAC values for the second mode decrease as more 

MMPs are used, but this is not the case for the third mode. Further investigation should be conducted 

to find more detailed relationships between the number of MMPs and MAC values. 



 

 

 
Figure 17 - The first 3 mode shapes identified from the proposed method 

Table 2 – MAC values of the first 3 modes for 4, 6 and 8 MMPs 

No. of MMPs 1st mode 2nd mode 3rd mode 

4 1.000 0.994 0.947 

6 1.000 0.986 0.930 

8 1.000 0.979 0.956 

4.2. Influence of car speed 

The influence of the vehicle speed is discussed in this section. Figure 18 presents the MAC values for 

the first three modes at different speeds using 4, 6 and 8 MMPs. It is shown that the car speed has a 

very limited influence on the first mode since the MAC values for this mode are all around one for 

car speeds ranging from 10 to 80 km/h. The car speed has more influence on the second mode, and 

the most influence on the third mode. This makes sense since higher modes are less excited and harder 

to identify. From Figure 18(b), it is inferred that the MAC values of the second mode are around one, 

when the speed lies in the range of 20 to 60 km/h. Thus, it appears that moving either too slow or too 

fast can adversely affect the identification accuracy. From Figure 18(c), the MAC values of the third 

mode are higher for the speed range of 20 to 60 km/h for 2, 6 and 8 MMPs, but drop quickly starting 

at 50 km/h for the case of 4 MMPs. It should be also noted that the relationships of MAC values 

among 2, 4, 6 and 8 MMPs are different at different speeds. This also proves that not a sole factor is 

affecting the identification accuracy. 

This section shows that unlike other mode shape identification methods as described in 23 where 

car speed has to stay at low levels, the proposed method can identify the first three modes very 

accurately even at nominal traffic speeds, which is a very important characteristic for real-life 

applications. The reason is that the matrix completion algorithm used in this paper is non-parametric, 



 

 

and does not explicitly utilize the frequency domain information. Therefore, the accuracy of the 

system identification is not restricted by the Nyquist–Shannon sampling theorem 54.  

 

Figure 18 – MAC values for the first three modes at different speeds 

4.3. Influence of car weight 

 

Figure 19 - MAC values for the first three modes for different car weights 

Generally, the weight of a car varies from 1,000 kg to 3,000 kg 55. This section discusses the influence 

of car weight on the mode shape identification. In this study, the car weights are simulated by 

assigning loads to MMPs. Considering the case of 2 MMPs, i.e., only one car, the weight of the car 

is evenly distributed to 2 MMPs where each MMP holds half weight of the car. Figure 19 shows the 

MAC values of the first 3 modes compared with ground truth by changing the car weight from 500 

kg to 5,000 kg. It is seen that there is no significant decrease in MAC values when the car weight 

changes. In fact, according to the analysis, the MAC values do not change too much as long as the 

car weight is less than 1/10 of the bridge weight. This conclusion is consistent with Yang et al. 24  

4.4. Linear interpolation versus high-order Lagrange interpolation 

The mapping step used in this paper was inspired by Oshima et al. 42 where they used high-order 

Lagrange interpolation to mapping displacements at MMPs to VFPs. Several issues are identified 

regarding applying high order Lagrange interpolation for the mapping which are listed below: 

1) The number of MMPs has to be equal to the number of VFPs in order to calculate the inverse 

of their mapping matrices. 



 

 

2) According to the observations, the inverse of their ( )tN  becomes very unstable when the 

MMPs are far from the given VFP. 

3) The original study uses all the VFPs for the Lagrange interpolations which results in 

overfitting of the data and makes the mapping very sensitive to the noise and the locations of 

the MMPs. It was also acknowledged in 42 that the accuracy is lower when more MMPs are 

used. 

To overcome the aforementioned issues, this paper proposes to use linear interpolation to replace 

high-order Lagrange interpolation, and limit the valid data to a range that is close to the MMPs. Also, 

Moore–Penrose inverse (i.e., pseudoinverse) is used instead of the standard inverse for the mapping. 

These improvements will make the inversion more stable while creating a sparse matrix. Then, a 

matrix completion algorithm follows to fill the sparse matrix. 

In order to make a direct comparison between the proposed mapping method and the one used 

in 42, we set the number of VFPs to 10, including two VFPs at boundaries, and the number of MMPs 

to 8 as well even though our proposed method can use fewer MMPs. It should be noted that two VFPs 

at the boundaries are utilized by our proposed mapping method but not the one in Oshima et al. 42 The 

other parameters are the same as in §3. 

 

Figure 20 – Comparison between Lagrange mapping proposed in Oshima et al.42 and ground truth 

Figure 20 presents the comparison between the Lagrange mapping proposed in 42 and the ground 

truth for four VFPs. As seen in Figure 15, the proposed mapping can reconstruct the displacements 

at VFPs more accurately with missing values. However, the Lagrange mapping used in Figure 20 

does not have missing values but have many inaccurate data points. For instance, as shown in the 

circled areas in Figure 20, the instability of the inverse results in some high frequency components 

which significantly reduces the performance of the system identification at higher modes. 

The first three mode shapes identified from matrix D that is mapped by high order Lagrange 

interpolation are presented in Figure 21. The MAC values for these three modes are 1.000, 0.998 and 

0.676. It is seen that the third mode is not identified correctly, which confirms that the instability of 

the mapping lead to inaccuracy in higher mode identification. 



 

 

 

Figure 21 - The first three normalized mode shapes identified from matrix D obtained by Lagrange 

mapping 

4.5. Influence of regularization coefficient λ 

In this section, the influence of the regularization coefficient λ is investigated. Using four MMPs as 

an example, different λ values ranging from 1 to 10-5 are used for the algorithm. The MAC values for 

the first three modes compared to the ground truth are presented in Figure 22. It is seen that the MAC 

values are small when λ is large. This is because if λ is too large, the regularization term of the 

objective function dominates the algorithm and masks the information of the mode shapes in the 

matrix. When λ becomes smaller, the MAC values of the first two modes reaches 1, but the MAC 

value of the third mode increases first and then decrease. This means lower modes are less sensitive 

to the regularization term, which makes sense because the regularization term aims to minimize the 

rank of the matrix. In practice, the error between valid elements within estimated matrix Z and matrix 

D and engineering judgement should be used to determine the optimal λ. 

 

Figure 22 - MAC values for the first three modes for different regularization coefficient λ 

4.6. Influence of Road Roughness 

It is well accepted that one of the main challenges in indirect mode shape identification is the road 

roughness 23, which can dominate the recorded vibrations. In this method, road roughness is added to 

the simulation to examine the robustness of the proposed method. Following the power spectral 

density (PSD) based procedure given in Yang and Lee 56, three different road profiles are generated 

using Gd (n0) of 0.01×10–6 m3, 1×10–6 m3, and 16×10–6 m3, representing low, medium and high road 

roughness, respectively. 56 The generated road profiles are presented in Figure 23. 



 

 

 

Figure 23 - Generated road roughness 

The MAC values for these three road profiles are presented in Figure 24. It is demonstrated that 

for the low road roughness case, the MAC values for the first three modes are almost the same as the 

case without any roughness. As the road roughness increases, the MAC values decrease. The 

identification accuracy of the lower modes is more robust to the road roughness compared to higher 

modes. The MAC value for the first mode at high road roughness case is 0.876, while they are 0.750 

and 0.492 for the second and third modes. It should be noted that the results in this section are obtained 

by directly applying the proposed method on rough road profiles. Preprocessing procedures like 

subtracting from two wheels 25, 42 or isolating the bridge vibration using blind source separation 47 

could help reducing the effect of road roughness, but they are not studied in this paper. 

 

Figure 24 – MAC values for different road profiles 

4.7. Influence of Noise 

Except road roughness, the measurement errors could also play an important role in the performance 

of the proposed method. To investigate the influence of the measurement errors, artificial noise is 

added to all the acceleration data collected from the MMPs before calculating displacement data using 

integration. The noise is generated from a Gaussian distribution with the mean of 0 and the standard 

deviation as a percentage of the root mean square of the data. The noise levels from 0% to 5% are 

added in this study. The Signal-and-Ratios (SNR) for different levels are 40, 34, 31, 28 and 26 dB. 

Figure 25 presents the MAC values of different modes at different numbers of MMPs and noise levels. 

As expected, all MAC values decrease as the noise level increase. Among these three modes, the first 

one is least affected by the noise, and the third one is the most. Considering different numbers of 



 

 

MMPs, the first and second modes identified using 8 MMPs are the most robust to the noise, but the 

MAC values of the third mode for 8 MMPs drop significantly as the noise level increases. 

 

Figure 25 – MAC values of the proposed method at different noise levels 

5. Conclusions and Recommendations for Future Work 

The paper presented a novel method for mode shape identification using data recorded on moving 

vehicles by converting it to a matrix completion problem. Linear interpolation is applied to map the 

data collected from vehicles to fixed VFPs on the bridge. Soft imputing algorithm is introduced to fill 

the missing values in the matrix due to the mapping. Numerical analyses are conducted to verify the 

method. The proposed method can use as few as one single vehicle to identify the first three modes 

with high accuracy. There are several advantages of this method compared to previous studies 25, 42: 

(i) The method works at traffic speeds ranging from 10 to 60 km/h. These speeds are more 

practical, as compared to earlier methods, which only allows very low speeds.  

(ii) Through mobile scanning using the vehicle, the method can identify more modes with higher 

resolution, while using a much lower number of sensors than the fixed sensor scenario. 

(iii) The method does not explicitly use information from the frequency domain, and thus it is 

more robust to noise and measurement errors.  

Despite promising results, it has to be acknowledged that more investigation should be 

conducted to further verify the method and to improve its capabilities—e.g., for considering multiple 

vehicles and automatically determining the optimal λ value. Experimental studies are planned also 

to validate the method. 

Data Availability Statement 

The data that support the findings of this study are available from the corresponding author upon 

reasonable request. 
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